E = x(x-3)2 - (x+2)3 + 11x(x-1)
E= x(x2 - 6x + 9) - (x3 + 3.x2.2 + 3.x.22 + 23) + 11x2 -11x
E= x3 - 6x2 + 9x - x3 - 6x2 - 12x - 8 + 11x2 - 11x
E= (x3 - x3) - (6x2 + 6x2 - 11x2 ) + (9x - 12x - 11x) -8
E= -x2 -14x -8
E= - (x2 + 14x +8)
E= - (x2 + 2.x .7 + 72 -41)
E = [(x+7)2 -41]
Với mọi x thì (x+7)2 >=0
=> (x+7)2 - 41 >= -41
=> - [(x+7)2 -41] =< 41
Dấu bằng xảy ra khi: (x+7)2 =0
=> x+7 =0
=> x= -7
Vậy giá trị lớn nhất của E là 41 khi x= -7