a,Cho biểu thức A=\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
CMR: A là số chính phương
b,Giair phương trình \(\sqrt{x-2}+\sqrt{y+2014}+\sqrt{z-2015}=\frac{1}{2}\left(x+y+z\right)\)
Rút gọn biểu thức :
a) A=\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\).
b)B=\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
c) C=\(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}.\)
Chứng minh rằng các biểu thức sau là 1 số nguyên:
a) \(A=\sqrt[3]{20+14\sqrt{2}}-\sqrt[3]{14\sqrt{2}-20}\)
b) \(B=\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\)
Rút gọn biểu thức
a) \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)
b) \(2\sqrt{20}-3\sqrt{20}+\sqrt{125}\)
CMR số sau lá số nguyen dương
\(\sqrt[3]{20+14\sqrt{2}}-\sqrt[3]{14\sqrt{2}-20}\)
Tính giá trị của biểu thức sau:
\(a,^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\)
\(b,^3\sqrt{9+4\sqrt{5}}+^3\sqrt{9-4\sqrt{5}}\)
\(c,^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\)
Tính giá trị của biểu thức sau:
\(a,^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\)
\(b,^3\sqrt{9+4\sqrt{5}}+^3\sqrt{9-4\sqrt{5}}\)
\(c,^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\)
cho \(x=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\) Tính giá trị biểu thức: \(P=x^2-6x+1977\)
Tính giá trị biểu thức :\(M=x^3-6x\) với \(x=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)