a) \(A=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}=\frac{a^2.\left(a+1\right)+\left(a+1\right).\left(a+1\right)}{a^2.\left(a+1\right)+a.\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right).\left(a^2+a-1\right)}{\left(a+1\right).\left(a^2+a+1\right)}=\frac{ }{ }\)\(\frac{a^2+a-1}{a^2+a-1}\)
duyệt đi