\(A=\frac{x}{xy+x+xyz}+\frac{y}{yz+y+1}+\frac{z}{xz+z+xyz}\)
\(=\frac{1+y+yz}{y+yz+1}=1\)
\(A=\frac{x}{xy+x+xyz}+\frac{y}{yz+y+1}+\frac{z}{xz+z+xyz}\)
\(=\frac{1+y+yz}{y+yz+1}=1\)
Cho biết xyz=1. Tính giá trị P=\(\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
Cho biết xyz=1
Tính giá trị \(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
Tính giá trị của biểu thức:\(A=\frac{x}{xy+x+1}+\frac{y}{y+1+yz}+\frac{z}{1+z+xz}\)
biết \(xyz=1\)
Cho \(x,y,z\)thỏa mãn\(xyz=1\). Tính giá trị biểu thức \(P=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
Cho xyz=1. Chứng minh: x/(xy+x+1)+y/(yz+y+1)+z/(xz+z+1)
tính A=1:(1+X+XY)+(1+Y+YZ)+(1+Z+XZ) BIẾT XYZ=1
cho biet xyz=1.tinh gia tri cua A=\(\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
Cho Biết xyz=1
Tính Giá Trị A= x/xy+x+1 + y/yz+y+1 + z/xz+z+1
Hộ vs AE ơi !!
a) Cho x, y, z và x - y - z = 0
Tính giá trị của biểu thức:
\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
b) Cho x, y, z thỏa mãn: xyz = 1
CMR:
\(\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{xyz+yz+1}=1\)