\(\Leftrightarrow a^2+2a-b^2-2bc-c^2+1=a^2-2a-b^2+2bc-c^2+1\)
\(\Leftrightarrow4a-4bc=0\Leftrightarrow4a=4bc\Leftrightarrow a=bc\)
Vậy ta có đpcm
\(\Leftrightarrow a^2+2a-b^2-2bc-c^2+1=a^2-2a-b^2+2bc-c^2+1\)
\(\Leftrightarrow4a-4bc=0\Leftrightarrow4a=4bc\Leftrightarrow a=bc\)
Vậy ta có đpcm
cho a,b,c>0 và a+b-c=b+c-a=c+a-b/b tính P=(1+b/a)(1+c/b)(1+a/c)
các bn giúp mih vs lm nhanh mih tik cho
Câu 1 : cho ad = bc chứng minh a/ a-b = c/ c-d
Câu 2 : cho a/b = b/c = c/a chứng minh rằng a^2+b^2+c^2/(a+b+c) = 1/3
Cho 3 số dương a,b,c biết 0≤ a ≤ b ≤ c ≤ 1
Chứng minh rằng \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\) ≤ 2
cho 3 số dương 0≤a≤b≤c≤1 chứng minh rằng (a/bc+1)+(b/bc+1)+(c/ab+1)≤2
1,tìm các số x,y,z biết rằng
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z=186
2,cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)chứng mih rằng \(\frac{a+b+c}{b+c+d}\)tất cả mủ 3 =\(\frac{a}{d}\)
3,cho\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)chứng minh rằng a=b=c
4,cho\(\frac{a}{2}=\frac{b}{5}\)và a.b=90.tìm a và b
5,tìm x,y,z biết \(\frac{y+z+1}{x}=\frac{y+z+2}{y}=\frac{x+y-3}{2}=\frac{1}{x+y+z}\)
Cho a,b,c thỏa mãn ab+bc+ca =1. Chứng minh rằng
\(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}=\dfrac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\)
Cho 3 số a,b,c thỏa mã abc=1. Hãy chứng minh rằng:
1/ab+a+1 + b/bc+b+1 + 1/abc+bc+b
Cho 3 số a, b, c khác 0, biết b2 = a và bc = 1. Chứng minh: a/b = a + b - 1/b - c + 1
Bài 1
a) Cho ba số a, b, c dương . Chứng tỏ rằng M = a/a+b + b/b+c + c/a+c không là số nguyên
b) Cho tỉ lệ thức a/b =c/d ( b,d khác 0 ; a khác -c ; b khác -d ) . Chứng minh: (a+b/c+d)^2 = a^2+b^2/c^2+d^2
c) Cho 1/c = 1/2(1/a+1/b) (Với a, b, c khác 0; b khác c). Chứng minh rằng: a/b=a-c/c-b
Bài 1:
a. Cho a,b,c > 0. CHứng tỏ rằng: M= a/a+b + b/b+c + c/c+a không là số nguyên.
b. Cho a,b,c thỏa mãn: a+b+c = 0. Chứng minh rằng: ab+bc+ca ≤ 0.
Bài 2:
Tìm hai số dương khác nhau x,y biết rằng tổng, hiệu và tích của chúng lần lượt tỉ lệ nghịch với 35;210 và 12.