Cho hai hàm số liên tục f(x) và g(x) có nguyên hàm lần lượt là F(x) và G(x) trên [0; 2]. Biết F(0) = 0, F(2) = 1, G(2) = 1 và ∫ 0 2 F ( x ) g ( x ) d x = 3 . Tính tích phân hàm: ∫ 0 2 G ( x ) f ( x ) d x
A. I = 3.
B. I = 0.
C. I = -2.
D. I = -4.
Cho hàm số f(x) có đạo hàm và liên tục trên đoạn [4;8] và f ( x ) ≠ 0 ∀ x ∈ [ 4 ; 8 ] Biết rằng
∫ 4 8 [ f ' ( x ) ] 2 f ( x ) 4 d x = 1 và f(4) = 1/4; f(8) = 1/2; tính F(6)
tính nguyên hàm F(x) của hàm số f(x) = (48x - 7)lnx biết F(1)=5
Biết F(x) là nguyên hàm của f(x) trên R thỏa mãn ∫ 1 e F ( x ) d ( ln x ) = 3 và F(e)=5 Tính I = ∫ 1 e ln x . f ( x ) d x
A. I = 3
B. I = –3
C. I = 2
D. I = –2
Cho hàm số f(x) có nguyên hàm là F(x) trên đoạn [1;2], biết F(2) = 1 và ∫ 1 2 F ( x ) d x = 5 . Tính I= ∫ 1 2 ( x - 1 ) f ( x ) d x
Cho hàm số f(x) có nguyên hàm là F(x) trên đoạn [1;2], biết F(2)=1 và ∫ 1 2 F ( x ) d x = 5 . Tính I = ∫ 1 2 ( x - 1 ) f ( x ) d x
( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
Cho f(x) = 1^4 +2^4+.....+n^4. Tìm f(x) bậc 5 sao cho f(x+1) - f(x) = x^4
Cho hàm số f(x) và g(x) có đạo hàm trên [1;4] và thỏa mãn hệ thức sau với mọi x ∈ [1;4]
f(1)=2g(1)=2; f'(x)= 1 x x . 1 g ( x ) ; g(x)= - 2 x x . 1 f ( x ) . Tính I= ∫ 1 4 [ f ( x ) . g ( x ) ] d x
Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số f x = 1 1 + sinx
a) F(x) = 1 - cos x 2 + π 4
b) G(x) = 2 tan x 2
c) H(x) = ln(1 + sinx)
d) K(x) = 2 1 - 1 1 + tan x 2