Cho a,b,c,d là các số thực ko âm thỏa mãn (a+b+c)(b+c+d)(c+d+a)(d+a+b)>0
chứng minh rằng \(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{a+d+c}}+\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{b+a+c}}\ge2\)
Cho a,b,c,d > 0. Tìm min
S= a/b+c+d+b/a+c+d+c/a+b+d+d/a+b+b+c+d/a+a+c+d/b+a+b+d/c+a+b+c/d
a) cho a,b,c không âm ; a+b+c=1 . tìm Max S
biết \(S=\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{a+c}\)
b)a,b,c,d không âm ; a+b+c+d=1,tìm Max S
Biết \(S=\sqrt[3]{2a+b}+\sqrt[3]{2b+c}+\sqrt[3]{2c+d}+\sqrt[3]{2d+a}\)
cho a, b, c, d >0 tìm GTNN của A= \(\frac{a+b}{b+c+d}+\frac{b+c}{c+d+a}+\frac{c+d}{d+a+b}+\frac{d+a}{a+b+c}\)
Cho a,b,c,d>0.Tìm GTNN của F=\(\frac{a+b}{b+c+d}+\frac{b+c}{c+d+a}+\frac{c+d}{d+a+b}+\frac{d+a}{a+b+c}\)
cho a,b,c,d >=0 tìm min
\(\frac{a}{b+c+d}+\frac{b+c+d}{a}+\frac{b}{a+c+d}+\frac{a+c+d}{b}+\frac{a+b+d}{c}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)+\(\frac{a+b+c}{d}\)
tìm số x ko âm biết
a,\(\sqrt{x}=4\) c, \(\sqrt{x}=-3\) e,\(\sqrt{x}=6,25\)
b,\(\sqrt{x}=\sqrt{7}\) d, \(\sqrt{x}=0\)
Cho a, b, c, d > 0. Tìm giá trị nhỏ nhất của biểu thức:
\(S=\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{a+b+d}+\frac{d}{a+b+c}+\frac{b+c+d}{a}+\frac{c+a+d}{b}+\frac{d+a+b}{c}\)
\(+\frac{a+b+c}{d}\)
Giúp với, mai nộp rồi!
Cho a,b,c,d>0. Tìm GTNN của:
\(S=\frac{a-d}{b+d}+\frac{d-b}{c+b}+\frac{b-c}{a+c}+\frac{c-a}{d+a}\)