-Đề sai.
Giả sử \(x=\dfrac{1}{3};y=\dfrac{2}{3};z=1\Rightarrow x+y+z=2\)
\(\dfrac{1}{3}.\dfrac{2}{3}+2.\dfrac{2}{3}.1+2.1.\dfrac{1}{3}=\dfrac{20}{9}< 3\)
-Đề sai.
Giả sử \(x=\dfrac{1}{3};y=\dfrac{2}{3};z=1\Rightarrow x+y+z=2\)
\(\dfrac{1}{3}.\dfrac{2}{3}+2.\dfrac{2}{3}.1+2.1.\dfrac{1}{3}=\dfrac{20}{9}< 3\)
Cho 3 số thực x,y,z#0, đôi một phân biệt và thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính P= \(\dfrac{yz}{x^2+2yz}+\dfrac{zx}{y^2+2zx}+\dfrac{xy}{z^2+2xy}\)
Giúp Mình Với :33
cho x,y,z là 3 số khác 0 thỏa mãn x^2+y^2+z^2/2xy +y^2 +z^2-x^2/2yz +z^2+x^2-y^2/2zx=1 cmr trong 3 số có 1 số là tổng của 2 số còn lại
mong mọi người giúp hứa tick
Cho các số x, y, z thỏa mãn: xy+yz+zx=1
Tính giá trị biểu thức
\(M=\dfrac{1}{x^2+2yz-1}+\dfrac{1}{y^2+2zx-1}+\dfrac{1}{z^2+2xy-1}\)
Cho x,y,z thỏa mãn \(x^2+y^2+z^2=1\).CMR:
\(\frac{x^2}{1+2yz}+\frac{y^2}{1+2zx}+\frac{z^2}{1+2xy}\ge\frac{3}{5}\)
Bài 1 : Cho x,y,z đôi một khác nhau và x+y+z=0.
Tính giá trị của biểu thức \(A=\frac{x^2y+2xz^2-xy^2-2yz^2}{2xy^2+2yz^2+2zx^2+3xyz}\)
bài 2 : Tìm các số nguyên dương x,y,z thỏa mãn \(xz=y^2\)và \(x^2+z^2+99=7y^2\)
BÀi 3 : Tìm các số tự nhiên x,y thõa mãn \(x^2-5x+7=3^y\)
cho xy+yz+zx=1. Tính: P=(x^2+2xy+y^2)/(x^2+1).(y^2+2yz+z^2)/(2.(y^2+1)).(z^2+2zx+x^2)/(3.(z^2+1))
Cho 3 số x, y, z khác nhau và khác 0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(CM:\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}=0\)
Giúp mình nha!!
Cho các số thực x, y, z thỏa mãn: x + y + z = 6. Tìm GTLN của
A= xy +2yz +3xz
Cho x, y, z là các số thưc thỏa mãn: \(2x^2+2y^2+z^2-2x+2y+2xy+2yz+2zx+2=0\)
Tìm giá trị biểu thức A= \(x^{2018}+y^{2018}+z^{2018}\)