Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyệt Dạ

Cho ba số x, y, z khác 0 thỏa mãn:x+y+z=2019  và \(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=2019

Tính A=\(\frac{1}{x^{2019}}\)+\(\frac{1}{y^{2019}}\)+\(\frac{1}{z^{2019}}\)

Trần Thanh Phương
3 tháng 2 2019 lúc 16:01

Sửa đề : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2019}\)

Thay \(2019=x+y+z\)ta có :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)

\(\Leftrightarrow\frac{y}{xy}+\frac{x}{xy}=\frac{z}{z\left(x+y+z\right)}-\frac{x+y+z}{z\left(x+y+z\right)}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-x-y-z}{z\left(x+y+z\right)}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)

\(\Leftrightarrow z\left(x+y\right)\left(x+y+z\right)=-xy\left(x+y\right)\)

\(\Leftrightarrow z\left(x+y\right)\left(x+y+z\right)+xy\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left[z\left(x+y+z\right)+xy\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left(xz+yz+z^2+xy\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)=0\)

( mình chỉ xét 1 t/h, các t/h còn lại hoàn toàn tương tự )

TH1 : \(x+y=0\)

\(\Leftrightarrow x=-y\)(1)

Thay (1) vào A ta có :

\(A=\frac{1}{-y^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}\)

\(A=\frac{1}{z^{2019}}\)

Mặt khác : \(x+y+z=2019\)

Thay (1) vào đẳng thức trên ta được : \(-y+y+z=2019\)

\(\Leftrightarrow z=2019\)

Thay z vào A ta được : \(A=\frac{1}{2019^{2019}}\)

Nguyệt Dạ
3 tháng 2 2019 lúc 17:10

sửa đền nha:\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=\(\frac{1}{2019}\)

Đỗ Phương Thảo
9 tháng 2 2019 lúc 21:37

nguyệt dạ hình như là mai linh... t đang tìm bài này thì thấy lp mk ... thành ra trong lp hỏi nhau :)))

Đỗ Phương Thảo
10 tháng 2 2019 lúc 14:36

cơ mak có cái t rất hay thắc mắc, đấy là khi mak cả 2 vế xh cùng 1 hạng tử thì bỏ đi cx đc, nhưng giải xong lại thiếu 1 th.. haizzz


Các câu hỏi tương tự
Nguyễn Ngọc Huyền
Xem chi tiết
No Name
Xem chi tiết
Nguyễn Bá Hùng
Xem chi tiết
Quyết Tâm Chiến Thắng
Xem chi tiết
I am➻Minh
Xem chi tiết
Nguyễn Khắc Quang
Xem chi tiết
Vô Diện
Xem chi tiết
Hoàng Thanh
Xem chi tiết
Nguyễn Duy Thịnh
Xem chi tiết