Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen Thi Hoai Linh

Cho ba số khác từng đôi một và khác 0 thỏa mãn a/b+c=b/a+c=c/a+b

Chứng minh 

b+c/a+a+c/b+a+b/c

Không phụ thuộc vào các giá trị a,b,c

 

soyeon_Tiểu bàng giải
23 tháng 10 2016 lúc 10:01

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}=\frac{a+b+c}{2.\left(a+b+c\right)}\)

Xét 2 trường hợp:

TH1: a + b + c = 0 thì \(\hept{\begin{cases}b+c=-a\\a+c=-b\\a+b=-c\end{cases}}\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+\left(-1\right)+\left(-1\right)=-3\), không phụ thuộc vào các giá trị a;b;c (1)

TH2: a + b + c \(\ne\) 0 thì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\), không phụ thuộc vào các giá trị a;b;c (2)

Từ (1) và (2) => đpcm

Ad
8 tháng 10 2018 lúc 17:07

Vì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

Suy ra \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)

\(\Rightarrow b+c=2a;a+c=2b;a+b=2c\)

Bằng cách rút \(b\) từ đẳng thức thứ nhất thay vào đẳng thức thứ hai ta đễ dàng suy ra được \(a=b=c\)

\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)


Các câu hỏi tương tự
Thanh Hiền
Xem chi tiết
Hồ Trần Yến Nhi
Xem chi tiết
phạm quỳnh anh
Xem chi tiết
ngọc Nhi
Xem chi tiết
Nguyễn Ngọc Minh Thư
Xem chi tiết
Ngọc Nguyễn Minh
Xem chi tiết
Khổng Anh
Xem chi tiết
Phạm Đức Duy
Xem chi tiết
pham thi minh
Xem chi tiết