Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
doanthihuong

Cho ba số dương x, y, z . Chứng minh rằng: \(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{3}{4}\)

Trần Thị Loan
20 tháng 4 2015 lúc 12:57

đặt a = 2x + y + z; b = 2y + z + x; c = 2z + x + y (a; b ; c > 0)

=> a + b + c = 4.(x+ y + z) => x + y + z = (a+ b+ c) / 4

=> x = a - (x+ y + z) = a - (a+ b + c) / 4 

y = b - (x + y + z) = b - (a+b+c) / 4

z = c - (x+y + z) = c - (a+b+c)/ 4 

Khi đó :  \(VT=1-\frac{a+b+c}{4a}+1-\frac{a+b+c}{4b}+1-\frac{a+b+c}{4c}\)

\(VT=3-\left(\frac{a+b+c}{4a}+\frac{a+b+c}{4b}+\frac{a+b+c}{4c}\right)=3-\frac{1}{4}.\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(VT=3-\frac{1}{4}.\left(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\right)=3-\frac{1}{4}.\left(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right)\)

Với a, b > 0 ta có: a/b + b/ a > = 2

=> \(\frac{1}{4}.\left(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right)\ge\frac{1}{4}.\left(3+2+2+2\right)=\frac{9}{4}\)

=> \(VT\le3-\frac{9}{4}=\frac{3}{4}\)

Dấu = xảy ra khi a= b = c => x = y = z 


Các câu hỏi tương tự
Nguyễn Hoàng Anh Thư
Xem chi tiết
Nguyen Kieu Chi
Xem chi tiết
thien ty tfboys
Xem chi tiết
tranthithao tran
Xem chi tiết
lê dạ quynh
Xem chi tiết
truong nhat  linh
Xem chi tiết
Việt Nguyễn
Xem chi tiết
Xem chi tiết
Duy Nguyễn
Xem chi tiết