Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhân Nguyễn Anh

Cho ba số dương a,b,c thỏa mãn điều kiện: a+2b+3c=2014. Tìm GTNN của biểu thức (a+b+c)(1/a+1/b+1/c)

* Sẽ bấm chọn ạ T.T :v Hộ trong 5 giờ nữa. Có thể thì gửi trực tiếp cho fb.com/anhnhannguyen.147 <3

Phước Nguyễn
7 tháng 4 2016 lúc 11:05

I'm gone!

Áp dụng bất đẳng thức AM - GM lần lượt cho ba số dương  \(a,b,c\)  và  ba phân thức \(\frac{1}{a},\frac{1}{b},\frac{1}{c}\)  không âm, ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)  \(\left(1\right)\)

và  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\)  \(\left(2\right)\)

Nhân từng vế  \(\left(1\right)\)  với  \(\left(2\right)\), ta được:  \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}=9\)

Vậy, giá trị nhỏ nhất của biểu thức  \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)  là  \(9\).

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c=\frac{1007}{3}\)  (bạn cần trình bày rõ kết quả này để ghi điểm tối đa: kết hợp với gt)

Phước Nguyễn
7 tháng 4 2016 lúc 11:05

I'm gone!

Áp dụng bất đẳng thức AM - GM từng lượt cho ba số dương  \(a,b,c\)  và  ba phân thức \(\frac{1}{a},\frac{1}{b},\frac{1}{c}\)  không âm, ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)  \(\left(1\right)\)

và  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\)  \(\left(2\right)\)

Nhân từng vế  \(\left(1\right)\)  với  \(\left(2\right)\), ta được:  \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}=9\)

Vậy, giá trị nhỏ nhất của biểu thức  \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)  là  \(9\).

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c=\frac{1007}{3}\)  (bạn cần trình bày rõ kết quả này để ghi điểm tối đa: kết hợp với gt)


Các câu hỏi tương tự
Hoàng Phúc
Xem chi tiết
tnt
Xem chi tiết
hung
Xem chi tiết
zZz Cool Kid_new zZz
Xem chi tiết
Trần Mai Anh
Xem chi tiết
Anh Nguyễn Hoàng
Xem chi tiết
nganhd
Xem chi tiết
Anh Mai
Xem chi tiết
Thiên Anh
Xem chi tiết