Nguyễn Ngọc Minh

Cho ba số a, b, c khác 0 thoả mãn điều kiện: a + b + c = \(\frac{1}{abc}\)

Chứng minh rằng : \(\frac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2+a^2b^2c^2}=\left(a+b\right)^2\)

Cảm ơn mọi người nhiều ! ^.^

_ɦყυ_
26 tháng 12 2018 lúc 11:37

cậu thử biến đổi tương xem thế nào....

_ɦყυ_
26 tháng 12 2018 lúc 11:37

khó thế

Phùng Minh Quân
24 tháng 6 2019 lúc 20:53

\(a+b+c=\frac{1}{abc}\)\(\Leftrightarrow\)\(abc^2=1-abc\left(a+b\right)\)

\(\Leftrightarrow\)\(a^2b^2c^4=1-2abc\left(a+b\right)+a^2b^2c^2\left(a+b\right)^2\)

\(VT=\frac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2+a^2b^2c^2}=\frac{1+a^2c^2+b^2c^2+a^2b^2c^4}{c^2+a^2b^2c^2}\)

\(=\frac{1+c^2\left(a^2+b^2\right)+1-2abc\left(a+b\right)+a^2b^2c^2\left(a+b\right)^2}{c^2+a^2b^2c^2}\)

\(=\frac{2+c^2\left(a+b\right)^2-2abc^2-2abc\left(a+b\right)+a^2b^2c^2\left(a+b\right)^2}{c^2+a^2b^2c^2}\)

\(=\frac{2-2abc\left(a+b+c\right)}{c^2+a^2b^2c^2}+\frac{\left(a+b\right)^2\left(c^2+a^2b^2c^2\right)}{c^2+a^2b^2c^2}\)

\(=\frac{2-2abc.\frac{1}{abc}}{c^2+a^2b^2c^2}+\left(a+b\right)^2=\left(a+b\right)^2=VP\) ( đpcm ) 

PS : sorry for late :'< 


Các câu hỏi tương tự
Cure Heart
Xem chi tiết
Tùng Nguyễn
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Phan Tuấn Dũng
Xem chi tiết
Roronoa Zoro
Xem chi tiết
Roronoa Zoro
Xem chi tiết
Phạm Hồ Thanh Quang
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Lê Ánh
Xem chi tiết