Áp dụng bất đẳng thức Cô – si ta có:
Cộng vế với vế bất phương trình (1), (2), (3) ta được:
Áp dụng bất đẳng thức Cô – si ta có:
Cộng vế với vế bất phương trình (1), (2), (3) ta được:
Cho $a$, $b$, $c$ là các số dương thỏa mãn $abc = 1$. Chứng minh rằng nếu $a + b + c > \dfrac1a + \dfrac1b + \dfrac1c$ thì có một và chỉ một trong ba số $a$, $b$, $c$ lớn hơn $1$.
Cho 3 số thực dương a,b,c thỏa mãn a+b+c=1
Chứng minh rằng
\(\frac{a^3}{a+bc}+\frac{b^3}{b+ca}+\frac{c^3}{c+ab}\ge1\)
Cho a,b,c là các số thực dương thỏa mãn. Chứng minh rằng:
\(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\ge1\)
Cho ba số thực dương a, b, c thỏa mãn abc = 1. Chứng minh rằng::
\(\frac{4a^3}{\left(1+b\right)\left(1+c\right)}+\frac{4b^3}{\left(1+c\right)\left(1+a\right)}+\frac{4c^3}{\left(1+a\right)\left(1+b\right)}\ge3\)
2.Cho a,b,c,d là các số thực dương thỏa mãn a2 + b2 + c2 = 1. Chứng minh: \(\frac{1}{b^2+c^2}+\frac{1}{c^2+a^2}+\frac{1}{a^2+b^2}\le\frac{a^3+b^3+c^3}{2abc}+3\) 1. Cho các số dương a,b,c thỏa mãn a+b+c=1. Chứng minh \(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\ge1\)
Cho 4 số nguyên dương \(a>b>c>d\) thỏa mãn \(ac+bd=\left(b+d+a-c\right)\left(b+d-a+c\right)\). Chứng minh rằng \(ab+cd\) không thể là số nguyên tố.
Cho a,b,c là các số thực dương thỏa mãn rằng \(a+b+c=3\) . Chứng minh rằng:
\(\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)^2\ge4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng:
\(\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}\le\frac{\left(a+b+c\right)^3}{18}\)
Cho a,b,c là các số thực dương thỏa mãn: a+b+c = 1. Chứng minh :
\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{abc}\ge30\)