Cho đường tròn (O; R). Từ điểm A nằm ngoài đường tròn kẻ các tiếp tuyến AB, AC với đường tròn (B,C là các tiếp điểm). Gọi H là trung điểm của BC
a, Chứng minh ba điểm A, H, O thẳng hàng và các điếm A, B, C, O cùng thuộc một đường tròn
b, Kẻ đường kính BD của (O). Vẽ CK vuông góc vói BD. Chứng minh AC.CD = CK.AO
c, Tia AO cắt đường tròn (O) tại M (M nằm giữa A và O). Chứng minh M là tâm đường tròn nội tiếp tam giác ABC
d, Gọi I là giao điểm của AD và CK. Chứng minh rằng I là trung điểm của CK
Đường tròn tâm O bán kính R. Từ điểm A nằm ngoài đường tròn kẻ tiếp tuyến AB : AC với đường tròn, B, C là tiếp điểm. Gọi H là trung điểm BC.
a) Chứng minh A, H, O thẳng hàng và các điểm A, B ,C ,O cùng một đường tròn.
b) Kẻ đường kính BD vẽ CK vuông góc BD. Chứng minh AC.CD=CK.AO
c) Tia AO cắt đường tròn tâm O tại M;N. Chứng minh MH.NA=MA.NH
d) AD cắt CK tại I. Chứng minh I là trung điểm CK.
Cho nửa đường tròn tâm O có đường kính AB. Gọi M là điểm bất kì thuộc nửa đường tròn, H là chân đường vuông góc kẻ từ M đén AB. Vẽ đường tròn (M; MH). Kẻ các tiếp tuyến AC, BD với đường tròn tâm M (C và D là các tiếp điểm khác H). Chứng minh rằng ba điểm C, M, D thẳng hàng và CD là tiếp tuyến của đường tròn (O)
Cho (O) và điểm A nằm bên ngoài đường tròn. Từ A kẻ các tiếp tuyến AB , AC với đường tròn (O) ( B , C là các tiểp điểm). Kẻ đường kính BD của đường tròn (O). 1) Chứng minh A , B , O , C cùng thuộc một đường tròn và OA //CD . 2) Kẻ CK vuông góc với BD tại K . Gọi I là giao điểm của AD và CK , E là giao của OA và BC . Chứng minh rằng góc ODE= góc OAD và KB. KC=4 KI2
giúp mk giải bài này vs lm ơn mik đag cần gấp
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A), bán kính AH. Từ C kẻ tiếp tuyến CM với đường tròn (A) (M là tiếp điểm, M không nằm trên đường thẳng BC).
a) Chứng minh bốn điểm A, M, C, H cùng thuộc một đường tròn.
b) Gọi I là giao điểm của AC và MH. Chứng minh AM2 = AI.AC.
c) Kẻ đường kính MD của đường tròn (A). Đường thẳng qua A vuông góc với CD tại K cắt tia MH tại F. Chứng minh BD là tiếp tuyến của đường tròn (A). Từ đó chứng minh ba điểm D,F, B thẳng hàng.
d) Đường tròn đường kính BC cắt đường tròn (A) tại P và Q. Gọi G là giao điểm của PQ và AH. Chứng minh G là trung điểm của AH.
Bài 1 Cho đường tròn (O;R) đường kính AB và dây AC không qua tâm O.Gọi H là trung điểm của AC
a)Tính góc ACB và chứng minh OH//BC
b)Tiếp tuyến tại C của đường tròn (O)cắt tia OH ở M.Chứng minh:đường thẳng MA là tiếp tuyến tại A của đường tròn (O)
c) Vẽ CK vuông góc với AB tại K.Gọi I là trung điểm của CK và đặt góc CAB=(alpha).Chứng minh:IK=2R.sin (alpha).cos(alpha)
d)Chứng minh ba điểm M,I,B thẳng hàng
CHo 2 đoạn thẳng AB,AC vuông góc với nhau (AB<AC).Vẽ đường tròn tâm O đường kính AB và đường tròn tâm O' đường kính AC. Gọi D là giao điểm thứ 2 của 2 đường tròn đó
a, chứng minh 3 điểm B,D,C thẳng hàng
b, gọi giao điểm của OO' và cung tròn AD của (O) là N. Chứng minh AN là tia phân giác của góc DAC
c, tia AN cắt đường tròn tâm O' tại M, gọi I là trung điểm của MN. Chứng minh tứ giác AOO'I nội tiếp đường tròn
từ diểm a nằm ngoài đường tròn (o) vẽ tiếp tuyến ab,ac với đường tròn( b,c là tiếp điểm). kẻ đường kính bd của đường tròn(o), gọi h là giao điểm của oa và bc.a)chứng minh oa//cd.b)đường thẳng qua o vuông góc với ad tại e cắt đường thẳng bc tại i. Gọi k là gao điểm của ad và bc. Chứng minh hc^2=hk.hi và 2/bc=1/ck-1/ci
cho tam giác ABC vuông tạo A ( AB<AC) có đường cao AH. Vẽ đường tròn tâm B bán kính BA cắt AH tại D. AC, CD là 2 tiếp tuyến của đường tròn (B;BA)
A) Vẽ đường kính AE . từ E vẽ đường thẳng vuông góc với AE cắt AD tại K. Chứng minh \(\frac{ED^2}{2}\)= DK.DH
B) gọi M là giao điểm của ba với đường tròn. từ M vẽ tiếp tuyến với (B) lần lượt cắt AC.CD tại P và Q. Giả sử Sabc = 2Sbpq. chứng minh 3PQ=CP+CQ