Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Anh Nguyễn

Cho B=2+2^2+2^3+...+2^30

Chứng minh rằng B chia hết cho 21

Trung Nguyen
19 tháng 10 2016 lúc 18:33

=2+2^2+2^3+...+2^60 = 2(1+2+2^2+2^3) + 2^5(1+2+2^2+2^3) + ... + 2^57(1+2+2^2+2^3) 
A=(2+2^5+...+2^57)*15 chia het cho 15 
CM: 
A chia hết cho 21 
=> A chia hết cho 3 và 7 
Ta có 
A=2(1+2)+2^3(1+2)+..............+2^59(1... 
A=3(2+2^3+2^5+........+2^59)chia hết cho 3 
Ta có : 
A=2(1+2+2^2)+2^4(1+2+2^2)+...........+2... 
A=7(2+2^4+2^7+..........+2^58) 
=> A chia hết cho 3 và 7=> A chia hết 
Vậy A chia hết cho 21 và 15

Kaito Kuroba
6 tháng 3 2017 lúc 20:51

Nếu B chia hết cho 21 suy ra B chia hết cho 3,7

B=(2+2^2)+(2^3+2^4)+...+(2^29+2^30)

=2(1+2)+2^3(1+2)+...+2^29(1+2)

=2.3+2^3.3+...+2^29.3

=3(2+2^3+...+2^29) chia hết cho 3

B=(2+2^2+2^3)+...+(2^28+2^29+2^30)

=2(1+2+2^2)+...+2^28(1+2+2^2)

=2.7+...+2^28.7

=7(2+...+2^28) chia hết cho 7 

Vậy B chia hết cho 21

Lê Bảo Sơn
14 tháng 3 2020 lúc 10:29

e dung roi

Khách vãng lai đã xóa

Các câu hỏi tương tự
Ongniel
Xem chi tiết
fidlend
Xem chi tiết
Kang Nhầu
Xem chi tiết
hận đời vô đối
Xem chi tiết
Hồng Nguyễn Thị
Xem chi tiết
Hồng Nguyễn Thị
Xem chi tiết
Hồng Nguyễn Thị
Xem chi tiết
Trần Bảo Hân
Xem chi tiết
Ngô Chí Tài
Xem chi tiết