Cho P = 10 x x 2 + 3 x − 4 − 2 x − 3 x + 4 + x + 1 1 − x . Tìm x Є Z để P + 1 Є Z
A. x Є {-23; -5; -3; 15}
B. x Є {-23; -5; -3}
C. x Є {5; -5; -3; 15}
D. x Є {-23; 15}
Bài 1: Cho phân thức: A= 2x^2-4x+8/x^3+8
a) Rút gọn A
b) Tính giá trị của A, biết |x| = 2
c) Tìm x để A = 2
d) Tìm x để A < 0
e) Tìm x thuộc Z để A có giá trị nguyên
Bài 2: Cho B= x^2-4x+4/x^2-4
a) Rút gọn B
b) Tính giá trị của B, biết |x-1| = 2
c) Tìm x để B = -1
d) Tìm x để B < 1
e) Tìm x thuộc Z để B nhận giá trị nguyên
1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z để (A,B)thuộc Z
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0
3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B b)tìm x để B=3/2 c) tìm giá trị nguyên của x để B có giả trị nguyên
4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1 d) tìm giá trị nhỏ nhất của biểu thức C
5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
P = 2 n 3 - 3 n 2 + 3 n - 1 n - 1 . Tìm n Є Z để P Є Z.
A. n Є {0; 2}
B. n Є {-1; 1}
C. n Є {-1; 2}
D. n Є {-2; 0}
a) Cho 3 số x,y,z thỏa mãn: x+y+z=0 tìm giá trị lớn nhất cuarB=xy+yz+zx
b)đa thức f(x) = x2+px+q với \(p\in Z,q\in Z\)Cmr tồn tại số nguyên k để f(k)= f(2008).f(2009)
c)tìm 3 số nguyên dương x,y thỏa mãn 3xy+x+15y - 44=0
d)Cho số tự nhiên a=(29)2009 , b là tổng các chữ số của b, d là tổng các chữ số của c. tính d
e)Cho pt ẩn x \(\frac{2x-m}{x-2}+\frac{x-1}{x+2}=3\)Tìm m để pt có nghiệm dương
a) Cho x,y,z là các số dương thỏa mãn x2+y2+z2=3, tìm giá trị nhỏ nhất của F=\(\dfrac{x^2+1}{z+2}\)+\(\dfrac{y^2+1}{x+2}\)+\(\dfrac{z^2+1}{y+2}\)
b) Với a,b,c > 0 thỏa mãn ab+bc+ca=3, chứng minh rằng
\(\sqrt{\dfrac{a}{a+3}}\) +\(\sqrt{\dfrac{b}{b+3}}\)+\(\sqrt{\dfrac{c}{c+3}}\)\(\le\)\(\dfrac{3}{2}\)
1, Cho x+y+z =1 và x,y,z>0 . Tìm giá trị lớn nhất của B= xyz(x+y)(y+z)(z+x)
2, Tìm số nguyên x để x^2 +x + 12 là số chính phương
bài 1a)cho x+2y =1. Tìm giá trị nhỏ nhất của x^2+2y^2
b)tìm giá trị nhỏ nhất của P=(x-2012)^2+(x+2013)^2
c)cho a,b,c>0, 1/1+a+1/1+b+1/1+c=2 tính giá trị lớn nhất của Q=abc
bài 2:a)cho a,b,c thuộc Z, chứng minh a^5+b^5+c^5-(a+b+c) chia hết cho 30
b)cho x,y,z >0 thỏa mãn x+y+z=3 chứng minh 1/x^2+x+1/y^2+y+1/z^2+z lớn hơn hoặc bằng 3/2
Các cậu ơi giúp mình vs ạ mình cần gấp, cảm ơn các cậu nhiều