Lời giải:
$B=1+(5+5^2+5^3)+(5^4+5^5+5^6)+....+(5^{88}+5^{89}+5^{90})$
$=1+5(1+5+5^2)+5^4(1+5+5^2)+....+5^{88}(1+5+5^2)$
$=1+(1+5+5^2)(5+5^4+....+5^{88})$
$=1+31(5+5^4+...+5^{88})\not\vdots 31$
Ta có đpcm.
Lời giải:
$B=1+(5+5^2+5^3)+(5^4+5^5+5^6)+....+(5^{88}+5^{89}+5^{90})$
$=1+5(1+5+5^2)+5^4(1+5+5^2)+....+5^{88}(1+5+5^2)$
$=1+(1+5+5^2)(5+5^4+....+5^{88})$
$=1+31(5+5^4+...+5^{88})\not\vdots 31$
Ta có đpcm.
A=5+52+53+....+589+590.Chứng minh rằng A chia hết cho 31
a, chứng tỏ rằng A = 1 + 5 + 5^2 + 5^3 +...+ 5^2018 chia hết cho 31
b,tìm số nguyên x biết: 2x + 7 chia hết cho 2x - 2
chứng tỏ rằng B=1+5+5^2+.....+5^7+5^8 chia hết cho 31.
a) Cho A = 2 + 22 + 23 +...+ 260. Chứng tỏ rằng A chia hết cho 3;7 và 15
b) Cho B = 1 + 5 + 52 + 53 +...+ 597 + 598. Chứng tỏ rằng B chia hết cho 31
Cho A= 5+52+53+54+55+...5200
a)chứng tỏ rằng A chia hết cho 6
b)chứng tỏ rằng A chia cho 31 dư 30
Chứng tỏ rằng :
a, (2n+1)(2n+2)(2n+3)chia hết cho 3
b, 5+52 +53 +...+512 chia hết cho 31
Cho S = 5 + 5^2 + 5^3 + 5^4 + .... + 5^99
a) Chứng tỏ rằng S chia hết cho 31
b) Chứng tỏ rằng S không chia hết cho 30
c) Tìm x biết 25^x - 5 = 4 x S
Mình có thể đợi và mình cũng sẽ tick bằng nick 37 điểm. Mong nhận được sự giúp đỡ
Chứng tỏ rằng: (1+5+5^2+5^3+...+5^403+5^404) chia hết cho 31
B = 2 + $2^{3}$ + $2^{5}$ + ... + $2^{31}$ chứng tỏ rằng B chia hết cho 10