Cho B=12/(2.4)^2+20/(4.6)^2+........+388/(96.98)^2+396/(98.100)^2. Hãy so sánh B với 1/4
Cho B = 12 ( 2.4 ) 2 + 20 ( 4.6 ) 2 + ... + 388 ( 96.98 ) 2 + 396 ( 98.100 ) 2 . Hãy so sánh B với 1 4
) Cho B = 12/(2.4)2 + 20/(4.6)2 + … 388/(96.98)2 + 396/(98.100)2. Hãy so sánh B với 1/4
Cho B = \(\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+..........+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)
Hãy so sánh B và \(\frac{1}{4}\)
Cho B=\(\frac{12}{\left(2.4\right)^2}\)+\(\frac{20}{\left(4.6\right)^2}\)+...\(\frac{388}{\left(96.98\right)^2}\)+\(\frac{396}{\left(98.100\right)^2}\). Hãy so sánh B với \(\frac{1}{4}\).
B=\(\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)
Ai nhanh mik tick cho
\(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(96.100\right)^2}\)
So sánh B với\(\frac{1}{4}\)
1. \(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)
So sánh \(B\) với \(\frac{1}{4}\)
2. SO sánh \(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\) và \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
cho B=12/(2*4)^2+20/(4*6)^2+...+388/(96*98)^2+396/(98*100)^2. hãy so sánh B với 1/4