cho x,y,z khác 0 và a,b,c >0 thỏa mãn:
ax+by+cz=0;và a+b+c=2017
tính giá trị biểu thức:
P=\(\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
cho x,y,z khác 0 và a,b,c dương thỏa mãn ax+by+cx=0 và a+b+b=2007.
Tính :\(P=\frac{ax^2+by^2+cz^2}{bc\left(y-x\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
cho ax+by+cz=0,a+b+c=2015. tính Q=\(\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2}\)
Biết ax+by+cz=0. Rút gọn:
A= \(\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
Cho \(\hept{\begin{cases}ax+by+cz=0\\a+b+c=\frac{1}{2017}\end{cases}}\). Tính giá trị biểu thức \(P=\frac{ax^2+by^2+cz^2}{ab\left(x-y\right)^2+bc\left(y-z\right)^2+ca\left(z-x\right)^2}\)
8Cho \(\frac{x}{a}+\frac{y}{b}=1\)và \(\frac{xy}{ab}=-2\)Tính \(\frac{x^3}{a^3}+\frac{y^3}{b^3}\)
10Cho \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)cà x^2+y^2=1 Chứng minh rằng
a) bx2 =ay2
b)\(\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)
25 Cho x,y,z khác 0 và a,b,c dương thỏa mãn ax+by+cz=0 cà a+b+c = 2007
Tính giá trị bieu thức P=\(\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
1.Cho x=by+cz,y=ax+cz,z=ax+by,x+y+z khác 0.Tính:
Q=\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{c}\)
2.Cho a+b+c=0.C/m:\(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)\)
3.Cho x+y+z=0.C/m:\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
4.Cho a,b,c đôi một khác nhau và khác 0 thỏa mãn:\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
C/m:abc=1 hoặc abc=-1
5.Cho x+y+xy=3,yz+y+z=8,xz+x+z=15.Tính x+y+z
6. Cho xy+x+y=-1 ;\(x^2y+xy^2=-12\)
Tính P=\(x^3+y^3\)
7.Cho a,b,c khác 0:\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
C/m:\(\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)
Cho a,b, c, x, y, z là các sô thực dương thỏa mãn điều kiện x+ y+z =1. Chứng minh
rằng:
\(ax+by+cz+2\sqrt{\left(xy+yz+zx\right)\left(ab+bc+ca\right)}\le a+b+c\)
1/ tìm a,b,c biết
(a\(^2\)+1)(b\(^2\)+2)c\(^2\)+8)-32abc=0
2/cho các số dương a,b,c,d biết:
\(\frac{a}{1+a}+\frac{b}{1+b}\frac{c}{1+c}\frac{d}{1+d}\)<=1
chứng minh rằng abcd<
3/cho abc=1 tính tổn
\(\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)
4/ cho biết ã+by+cz=0 và a+b+c=\(\frac{1}{2006}\)
chứng minh rằng \(\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2-ab\left(z-y\right)^2}\)=2006