Điều kiện xác định \(x\ge0\)
\(A=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)
\(=x-\sqrt{x}-\left(x+\sqrt{x}\right)=-2\sqrt{x}\)
\(B=\frac{1}{3}-\sqrt{A+x+1}=\frac{1}{3}-\sqrt{x-2\sqrt{x}+1}=\frac{1}{3}-\sqrt{\left(\sqrt{x}-1\right)^2}=\frac{1}{3}-\left|\sqrt{x}-1\right|\)
\(=\frac{1}{3}-\left(1-\sqrt{x}\right)=\sqrt{x}-\frac{2}{3}\) (vì \(0\le x\le1\))