A không phải là nghiệm
Vì theo mk tính thì A= \(\sqrt{3}\)- \(\sqrt{2}\)
mà nghiệm của phương trình mk tìm đc là \(\sqrt{3}\)- 2
=> A không phải là nghiệm của phương trình trên.
A không phải là nghiệm
Vì theo mk tính thì A= \(\sqrt{3}\)- \(\sqrt{2}\)
mà nghiệm của phương trình mk tìm đc là \(\sqrt{3}\)- 2
=> A không phải là nghiệm của phương trình trên.
Giải phương trình:
\(\frac{2\left(x-\sqrt{3}\right)\left(x-\sqrt{2}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{2}\right)}=3x-1\)
1/Tính:
a)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
b)\(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\right).\left(3\sqrt{\frac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)
2/Giải phương trình:
a)\(\sqrt{x^2-2x+1}=7\)
b) \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
Bài 1: Rút gọn
a. \(\left(5-2\sqrt{3}\right)^2+\left(5+2\sqrt{3}\right)^2\)
b. \(\left(\sqrt{5}+\sqrt{2}\right)^2-\left(2\sqrt{5}+1\right)\left(2\sqrt{5}-1\right)-\sqrt{40}\)
c. \(\left(\sqrt{2}-1\right)^2-\frac{2}{3}\sqrt{4}+\frac{4\sqrt{2}}{5}+\sqrt{1\frac{11}{15}}-\sqrt{2}\)
d. \(\left(\sqrt{6}-\sqrt{18}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right)2\sqrt{6}+2\sqrt{3}\)
e. \(\left(2\sqrt{3}-3\sqrt{2}\right)^2+6\sqrt{6}+3\sqrt{24}\)
Bài 2: Rút gọn
A =\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}:\frac{\sqrt{x+1}}{x-2\sqrt{x}+1}\right)\)(x>0 ; x khác 1)
Câu 1: Cho A= \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{120}+\sqrt{121}}\)B=\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{35}}\)
Chứng minh A<B
Câu 2: Tính A=\(\sqrt[3]{\frac{X^3-3X+\left(X^2-1\right)\sqrt{X^2-4}}{2}}+\sqrt[3]{\frac{X^3-3X+\left(X^2-1\right)\sqrt{X^2-4}}{2}}\)Với x=\(\sqrt[3]{2017}\)
Câu 3: Cho hai số thực x và y thoã mãn \(\left(\sqrt{X^2+1}+X\right)\left(\sqrt{Y^2+1}+Y\right)=1\)Tính x+y
Câu 4: Trục căn thức mẫu số A= \(\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\)
Câu 5 : Gọi a là nghiệm nguyên dương của Phương trình \(\sqrt{2}X^2+X-1=0\)Không giải pt tính
C=\(\frac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
giải phương trình
a) \(\left(x+\frac{5-x}{\sqrt{x}+1}\right)^2+\frac{16\sqrt{x}\left(5-x\right)}{\sqrt{x}+1}-16\)\(=0\)
b) \(\sqrt{2x-\frac{3}{x}}+\sqrt{\frac{6}{x}-2x}=1+\frac{3}{2x}\)
c) \(\sqrt{2x+1}+\frac{2x-1}{x+3}-\left(2x-1\right)\sqrt{x^2+4}-\sqrt{2}=0\)
d) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
\(\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}-\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\)
\(\left(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}+1}\right):\left(1-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
\(\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{5}{x+\sqrt{x}-6}+\frac{1}{2-\sqrt{x}}\)
Giải phương trình :
\(\frac{2\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{2}\right)}=3x-1\) .
Rút gọn
\(1.A=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(2.B=\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)
\(3.C=\left(\frac{2x-1+\sqrt{x}}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right).\left(\frac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right)\)
1)Giải phương trình
\(\sqrt{x}+\sqrt[4]{20-x}=4\)
2)Cho A= \(\frac{\sqrt{1-\sqrt{1-x^2}.\left(\sqrt{\left(1+x^{ }\right)}^3+\sqrt{\left(1-x\right)^3}\right)}}{2-\sqrt{1-x^2}}\)
Rút gọn và tìm x để A>=2
3)Cho P=\(\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{2\sqrt{x}}{\sqrt{xz}+2\sqrt{z}+2}\)
Tìm\(\sqrt{P}\)
biết xyz=1