a, \(A=\frac{n-1}{n+4}\) là phân số
\(\Leftrightarrow n+4\ne0\)
\(\Rightarrow n\ne-4\)
b, \(A=\frac{n-1}{n+4}\inℤ\Leftrightarrow n-1⋮n+4\)
\(\Rightarrow n+4-5⋮n+4\)
\(n+4⋮n+4\)
\(\Rightarrow5⋮n+4\)
\(n\inℤ\Rightarrow n+4\inℤ\)
\(\Rightarrow n+4\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-5;-3;-9;1\right\}\)
\(a)\) Để A là phân số thì \(n+4\ne0\)\(\Rightarrow\)\(n\ne-4\)
\(b)\) Ta có :
\(A=\frac{n-1}{n+4}=\frac{n+4-5}{n+4}=\frac{n+4}{n+4}-\frac{5}{n+4}=1-\frac{5}{n+4}\)
Để \(A\inℤ\) thì \(\frac{5}{n+4}\inℤ\)\(\Rightarrow\)\(5⋮\left(n+4\right)\)\(\Rightarrow\)\(\left(n+4\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(n+4\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(-3\) | \(-5\) | \(1\) | \(-9\) |
Vậy \(n\in\left\{-9;-5;-3;1\right\}\) thì \(A\inℤ\)
Chúc bạn học tốt ~
a và b
để n nguyên và là phân số
<=>n-1 chia hết cho n-4
<=>n-1-(n-4) chia hết cho n-4
<=>n-1-n+4 chia hết cho n-4
<=>5 chia hết cho n-4
<=>n-4 thuộc ước của 5
<=>ước của 5 là {1;-1;5;-5}
<=>n-4 thuộc {1;-1;5;-5}
<=>n thuộc {5;3;9;-1}
Vậy các số nguyên n cần tìm là 5;3;9;-1 là các số cần tìm để A là phân số và là 1 số nguyên
a) Để A là phân số thì \(n+4\ne0\Rightarrow n\ne-4.\)
b) ta có: \(A=\frac{n-1}{n+4}=\frac{\left(n+4\right)-5}{n+4}=1-\frac{5}{n+4}\)
Để A là số nguyên thì \(5⋮n+4\) hay \(n+4\inƯ_{\left(5\right)}=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau :
n+4 | 1 | -1 | 5 | -5 |
n | -3 | -5 | 1 | -9 |
Vậy \(n\in\left\{-3;-5;1;-9\right\}\)
nhưng -3 khác -4,khi thay vào lại là 1 số nguyên mà bạn