Ta có: \(A=\frac{2n}{n-2}\Rightarrow n>0\)
Lập luận
+ n lớn hơn không vì nếu n nhỏ hơn 0 thì \(\frac{2n}{n-2}\)sẽ trở thành \(\frac{2\left(-n\right)}{n-2}\) (vô lý)
=> n thuộc tập N*
Ta có: \(A=\frac{2n}{n-2}\Rightarrow n>0\)
Lập luận
+ n lớn hơn không vì nếu n nhỏ hơn 0 thì \(\frac{2n}{n-2}\)sẽ trở thành \(\frac{2\left(-n\right)}{n-2}\) (vô lý)
=> n thuộc tập N*
Cho phân số C=\(\frac{2n+7}{n+2}\)\(\left(n\in Z,n\ne-3\right)\). Tìm các giá trị của n để D là số nguyên?
1/a/ Cho biểu thức A =\(\frac{5}{n-1}\),(n \(\in\)z)
Tìm điều kiện của n để A là phân sô? Tìm tất cả giá trị nguyên của n để A là số nguyên?
b/ Chứng minh phân số \(\frac{n}{n+1}\)tối giản; ( n \(\in\)N và n \(\ne\)0 )
Cho A=3n-2/2n+4
a,Tìm n thuộc z để A là phân số
b,tìm a với n=0,n=(-1),n=2
c,tìm n thuộc Z để a là có giá trị nguyên
cho \(A=\frac{4n+1}{2n+1}\left(n\in z\right)\)
a,Tìm số nguyên n để \(A\)có giá trị là số nguyên ?
b,Tìm n để \(A\)đạt giá trị lớn nhất ? giá trị nhỏ nhất ?
cho A= 2n/n-2 (biết n thuộc Z , n khác 2) .Hãy tìm số nguyên n để giá trị của A là một số nguyên
cho a=2n/n-2 [biết n e z ;n khác ] hãy tìm số nguyên n để giá trị của a là một số nguyên
Cho A= \(\frac{2n-1}{N+2}\)(\(n\ne-2\)
Tìm \(n\in Z\)
để A là số nguyên ?//
Cho A=2n/n-2(biết n € Z,n#2)
Hãy tìm số nguyên n để giá trị của A là một số nguyên
cho A =\(\frac{6n+7}{2n+1}\)(n thuộc Z)
a)tìm số nguyên n để A có giá trị là số nguyên
b)tiomf số nguyên n để A đạt giá trị lớn nhất
c)chứng tỏ rằng A là phân số tối giản