a)\(\Rightarrow\frac{A}{2}=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{101}}\)
\(\Rightarrow A-\frac{A}{2}=\frac{1}{2}-\frac{1}{2^{101}}\)
\(\Rightarrow A=\frac{2^{100}-1}{2^{101}}\)
b)vì \(\frac{2^{100}}{2^{100}}=1\in N\Rightarrow\frac{2^{100}-1}{2^{100}}\ne1\notin N\left(đpcm\right)\)