A=1+[\(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}\)
ta có \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};......;\frac{1}{50^2}<\frac{1}{49.50}\)
=>A<1+\(\left[\frac{1}{1.2}+.........+\frac{1}{49.50}\right]\)
=>A<1+\(\left[\frac{1}{1}-\frac{1}{50}\right]\)
=>A<1+\(\frac{49}{50}\)
=>A<\(\frac{99}{50}\) <2
=>A<2
K MÌNH NHA BÀI NÀY MÌNH GHI MỎI TAY LẮM
A=\(\frac{1}{1^2}+\frac{1}{2^2}+....+\frac{1}{50^2}\)
A<\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49\cdot50}\)
A<1+\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)
A<1+\(\left(1-\frac{1}{50}\right)\)
A<1+\(\frac{49}{50}\)
=>A<2