Ta có : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}+4\ge3\left(\frac{a}{b}+\frac{b}{a}\right)\)(1) . Đặt \(x=\frac{a}{b}+\frac{b}{a}\)
\(\Rightarrow\left|x\right|=\left|\frac{a}{b}+\frac{b}{a}\right|=\left|\frac{a}{b}\right|+\left|\frac{b}{a}\right|\ge2\) \(\Rightarrow\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)
bpt (1) \(\Leftrightarrow\left(x^2-2\right)+4\ge3x\Leftrightarrow x^2-3x+2\ge0\)
Xét bất phương trình sau : \(y^2-3y+2\ge0\Leftrightarrow\left(y-1\right)\left(y-2\right)\ge0\Leftrightarrow\orbr{\begin{cases}y\ge2\\y\le1\end{cases}}\)
Từ \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\) suy ra x nằm trong miền nghiệm của bất phương trình đang xét , vậy x phải thỏa mãn \(y^2-3y+2\ge0\), tức là \(x^2-3x+2\ge0\)đúng.
Suy ra (1) đúng. Vậy ta có đpcm
+TH1: a, b trái dấu \(\Rightarrow\frac{a}{b}+\frac{b}{a}\le0\)
\(\Rightarrow VT>0\ge VP\), bất đẳng thức luôn đúng
+TH2: a, b cùng dấu \(\Rightarrow\frac{a}{b}+\frac{b}{a}=\left|\frac{a}{b}\right|+\left|\frac{b}{a}\right|\ge2\sqrt{\left|\frac{a}{b}\right|.\left|\frac{b}{a}\right|}=2\)
bđt \(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)^2+2\ge3\left(\frac{a}{b}+\frac{b}{a}\right)\)
Đặt \(t=\frac{a}{b}+\frac{b}{a}\ge2\)
Cần chứng minh \(t^2+2\ge3t\Leftrightarrow\left(t-1\right)\left(t-2\right)\ge0\text{ }\left(\text{đúng }\forall t\ge2\right)\)