\(\frac{b+c-a}{a}+\frac{2a}{a}=\frac{a+c-b}{b}+\frac{2b}{b}=\frac{a+b-c}{c}+\frac{2c}{c}\)
\(\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
=> a=b=c
A=(1+1)(1+1)(1+1) = 2.2.2 =8
\(\frac{b+c-a}{a}+\frac{2a}{a}=\frac{a+c-b}{b}+\frac{2b}{b}=\frac{a+b-c}{c}+\frac{2c}{c}\)
\(\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
=> a=b=c
A=(1+1)(1+1)(1+1) = 2.2.2 =8
cho a,b,c \(\ne\)0 thỏa mãn a+b+c = 0 thỏa mãm a+b+c = 0 . Tính \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
cho a,b,c là các số thực khác 0 thỏa mãn \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\text{. Tính P}=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
cho a,b,c thỏa mãn : \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-b\right)\left(c-a\right)}=2013\)
tính M = \(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)
Cho a,b,c khác 0 thỏa mãn \(\frac{a-b+c}{2b}=\frac{c-a+b}{2a}=\frac{a-c+b}{2c}\). Tính \(P=\left(1+\frac{c}{b}\right)\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\)
Cho các số tự nhiên a,b,c khác 0 thỏa mãn : \(\frac{a-b+c}{2b}=\frac{c-a+b}{2a}=\frac{a-c+b}{2c}\). Tính P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\)
Cho a,b,c thỏa mãn:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)= 2013
Tính giá trị biểu thức:
\(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)
Cho a,b,c là các số khác 0 thỏa mãn: \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính giá trị của biểu thức: P = \(\left(1+\frac{b}{a}\right).\left(1+\frac{c}{b}\right).\left(1+\frac{a}{c}\right)\)
Cho a,b,c >0 và thỏa mãn
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính M = \(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
Cho số 4,b,c khác 0 thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)
Tính P\(\left(1+\frac{a}{b}\right)\cdot\left(1+\frac{b}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)