Cho a,b,c \(\ge0\)
Cmr: \(a^2\left(b+c-a\right)+b^2\left(c+a-b\right)+c^2\left(a+b-c\right)\le3abc\)
Cho a,b,c>0. CMR:
\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge4\left(a+b+c\right)\)
cho \(a,b,c\ge0\)và a+b+c=1.
cmr: \(a+2b+c\ge4\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
Cho a b c là các số thực không âm đôi một khác nhau. CMR :
\(\left(ab+bc+ca\right).\left(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}\frac{1}{\left(c-a\right)^2}\right)\ge4\)
cho a,b,c>0, CMR:
\(\left(a+b+\dfrac{1}{4}\right)^2+\left(b+c+\dfrac{1}{4}\right)^2+\left(c+a+\dfrac{1}{4}\right)^2\ge4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\right)\)
Cho các số thực a, b, c. Chứng minh rằng:
\(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a+b+c+1\right)^2\)
1. cho \(0< a\le b\le c\) . Cmr: \(\frac{2a^2}{b^2+c^2}+\frac{2b^2}{c^2+a^2}+\frac{2c^2}{a^2+b^2}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
2. cho \(a,b,c\ge0\). cmr: \(a^2+b^2+c^2+3\sqrt[3]{\left(abc\right)^2}\ge2\left(ab+bc+ca\right)\)
3. \(a,b,c>0.\) Cmr: \(\sqrt{\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)}\ge abc+\sqrt[3]{\left(a^3+abc\right)\left(b^3+abc\right)\left(c^3+abc\right)}\)
4. \(a,b,c>0\). Tìm Min \(P=\left(\frac{a}{a+b}\right)^4+\left(\frac{b}{b+c}\right)^4+\left(\frac{c}{c+a}\right)^4\)
Cho a,b,c dương và abc=1
CMR: \(\frac{a^4}{2\left(b+c\right)^2}+\frac{b^4}{2\left(a+c\right)^2}+\frac{c^4}{2\left(a+b\right)^2}+\frac{1}{c^2\left(a+c\right)\left(a+b\right)}+\frac{1}{b^2\left(a+b\right)\left(b+c\right)}+\frac{1}{a^2\left(a+c\right)\left(a+b\right)}\ge\frac{1}{8}\)
Cho a,b,c > 0. Cmr: \(\frac{a\left(b+c\right)}{a^2+\left(b+c\right)^2}+\frac{b\left(c+a\right)}{b^2+\left(c+a\right)^2}+\frac{c\left(a+b\right)}{c^2+\left(a+b\right)^2}\le\frac{6}{5}\)