a)Cho a,b,c \(\ge\)0, a+b+c\(\le\)1.Chứng minh rằng:\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
b)Cho a,b,c \(\ge\)0, a+b+c\(\le\)6.Chứng minh rằng: \(\sqrt{a+\sqrt{b+\sqrt{2c}}}+\sqrt{b+\sqrt{c+\sqrt{2a}}}+\sqrt{c+\sqrt{a+\sqrt{2b}}}\le6\)
cho a,b, c\(\ge\)0; a+b+c=1. Chứng minh rằng\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
Cho a, b, c > 1 và \(\sqrt{a-1}\) + \(\sqrt{b-1}\) + \(\sqrt{c-1}\) \(\le\)\(\dfrac{3}{2}\)
Chứng minh rằng:
\(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}+\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{15}{2}\)
Cho a,b,c > 0 thỏa mãn a + b + c = 1.CMR:
\(A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
1.Chứng minh \(\sqrt{x^2+xy+y^2}+\sqrt{x^2+xz+z^2}\ge\sqrt{y^2+yz+z^2}\)
2. Cho a,b,c>0. Chứng minh \(\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)-\frac{a+b+c}{\sqrt[3]{abc}}\le6\)
3. Cho a,b>0 , n là số nguyên dương. Chứng minh \(\frac{1}{\sqrt[n]{a}}+\frac{1}{\sqrt[n]{b}}\ge2\sqrt[n]{\frac{2}{a+b}}\)
4. Cho a,b,c >0. Chứng minh \(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ba}\le\frac{a+b+c}{2abc}\)
Cho a+b+c=1, a, b, c\(\ge0\). Chứng minh
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\left(a,b,c>0\right)\)
\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le3,5\)
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
Cho a,b,c>0 và abc=1
cmr: \(\frac{b+c}{\sqrt{a}}+\frac{a+c}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3
\)
1, Cho a, b, c là 3 số dương. CMR:
a, \(\dfrac{a}{\sqrt{a+b}\sqrt{a+c}}+\dfrac{b}{\sqrt{a+b}\sqrt{b+c}}+\dfrac{c}{\sqrt{a+c}\sqrt{b+c}}\le\dfrac{3}{2}\)
b, \(\dfrac{a}{\sqrt{a+b}\sqrt{b+c}}+\dfrac{b}{\sqrt{a+c}\sqrt{b+c}}+\dfrac{c}{\sqrt{a+c}\sqrt{b+a}}\ge\dfrac{3}{2}\)
Cho a,b,c>0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\). Chứng minh
\(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\ge\sqrt{abc}+\sqrt{a}+\sqrt{b}+\sqrt{c}\)