abcd = 1 \(\Rightarrow\hept{\begin{cases}ab=\frac{1}{cd}\\ac=\frac{1}{bd}\\bc=\frac{1}{ad}\end{cases}}\)
Áp dụng bđt AM-GM ta có:
A = \(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\)\(=\left(a^2+b^2+ab\right)+\left(c^2+d^2+cd\right)+ac+bc+bd+ad\)
\(=\left(a^2+b^2+ab\right)+\left(c^2+d^2+cd\right)+\left(\frac{1}{bd}+bd\right)+\left(\frac{1}{ad}+ad\right)\)
\(\ge3\sqrt{a^2.b^2.ab}+3\sqrt{c^2.d^2.cd}+2\sqrt{\frac{1}{bd}.bd}+2\sqrt{\frac{1}{ad}.ad}\)
\(\Leftrightarrow A\ge3ab+3cd+2+2\)\(=\frac{3}{cd}+3cd+4\ge2\sqrt{\frac{3}{cd}.3cd}+4=6+4=10\)
Dấu "=" xảy ra khi a = b = c = d = 1