Bài 1
a) Cho ba số a, b, c dương . Chứng tỏ rằng M = a/a+b + b/b+c + c/a+c không là số nguyên
b) Cho tỉ lệ thức a/b =c/d ( b,d khác 0 ; a khác -c ; b khác -d ) . Chứng minh: (a+b/c+d)^2 = a^2+b^2/c^2+d^2
c) Cho 1/c = 1/2(1/a+1/b) (Với a, b, c khác 0; b khác c). Chứng minh rằng: a/b=a-c/c-b
Cho a/b=c/d(b;d khác 0) chứng minh rằng
1.a/(a+b) = c /(c+d)
2,(a-b)/ b = (c-d) / d
3.(2a+b)/(2a-b) = (2c+d) / (2c-d)
cho a/b=b/c=c/d và a+b+c khác 0 chứng minh rằng (a+b+c)^3/(b+c+d)^3
Cho b^2 = ac ; c^2 = bd với b, c, d ≠ 0; b+c ≠ 0; b^3+c^3≠ d^3 3. Chứng minh rằng:
a) \(\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\)
b) \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
Cho a/b= c/d (a, b, c, d khác 0) chứng minh rằng a-b/b=c-d/d
1) cho các số nguyên abc (a> b> c> d> 0). chứng minh rằng: nếu a /b= c/ d thì a+ d> b+ c
2) cho 1< a< b+ c< a+ 1 và b< c. chứng minh rằng b< a
Cho a/b=c/d khác +1 và-1; c khác 0
chứng minh rằng: a, (a-b/c-d)^2=ab/cd
b,(a+b/c+d)^3=a^3-b^3/c^3-d^3
chứng minh rằng: nếu a/b=c/d khác 1 thì (a+b)/(a-b)=(c+d)/(c-d) với a,b,c,d khác 0
1) cho các số nguyên abcd (a>b>c>d>0)
chứng minh rằng:p nếu a/b= c/d thì a+d>b+c
2)cho 1<a<b+c<a+1 và b<c. chứng minh rằng b<a