a, Rút gọn biểu thức \(A=\dfrac{\sqrt{1-\sqrt{1-x^2}}\left(\sqrt{\left(1+x\right)^3}+\sqrt{\left(1-x\right)^3}\right)}{2-\sqrt{1-x^2}}\) với \(-1\le x\le1\)
b, Tính giá trị biểu thức Q = \(\dfrac{a^6-2a^5+a-2}{a^5+1}\)biết \(\dfrac{a}{x+y}=\dfrac{5}{x+z}\)và \(\dfrac{25}{\left(x+z\right)^2}=\dfrac{16}{\left(z-y\right)\left(2x+y-z\right)}\)
Giúp em với ạ
Bài Toán :
Cho x, y, z > 0 và thỏa mãn :
\(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}=1\)
Tính giá trị lớn nhất của biểu thức :
\(Q=\dfrac{x}{\sqrt{yz.\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz.\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy.\left(1+z^2\right)}}\)
Đây là một số bất đẳng thức trích từ một số đề thi vào chuyên,rất mong nhận được lời giải từ mọi người :
Bài 1:Cho x,y,z >0 thỏa mãn x+y+z=1
Tìm Max Q= \(\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+zx}}+\dfrac{z}{z+\sqrt{z+xy}}\)
Bài 2:Cho x,y,z>0 thỏa mãn :x+y+z=1
Chứng minh:\(\dfrac{1-x^2}{x+yz}+\dfrac{1-y^2}{y+zx}+\dfrac{1-z^2}{z+xy}\ge6\)
Bài 3:Cho x,y,z>8
Tìm Min P=\(\dfrac{x}{\sqrt{y+z}-4}+\dfrac{y}{\sqrt{z+x}-4}+\dfrac{z}{\sqrt{x+y}-4}\)
Bài 4: Cho a,b,c>0 thỏa mãn (a+b)(b+c)(c+a)=1
CMR: ab+bc+ca\(\le\dfrac{3}{4}\)
LỌC MEN PRO giỏi toán của hoc24.vn đây (Chỉ dành cho boy 2k4)
Cho biểu thức: A=\(\left(\dfrac{x+\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}-x}{\sqrt{x}-1}\right)\left(1+\dfrac{1}{\sqrt{x}}\right)\)
a) Rút gọn biểu thức A
b) Tìm giá trị của x để A = 4
c) Tìm x để 3/A là số nguyên
Cho x, y, z thỏa mãn : \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\). Cmr :
\(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{zx\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\ge\dfrac{3}{2}\).
Cho: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)và x, y, z khác 0
CMR: \(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)
1.Tìm 3 số nguyên dương x, y, z biết:
\(\dfrac{1}{\sqrt{2x-3}}+\dfrac{4}{\sqrt{y-2}}+\dfrac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}=14\)
2.Diện tích hình thang ABCD có 2 đường chéo AC = 9cm và BD = 12cm, tổng 2 đáy AB + CD = 15cm là SABCD = .....cm2.
3.Cho A là tập hợp các số tự nhiên n sao cho \(\left(14x^5-7x^3+2x\right)⋮7x^n\)
\(\Rightarrow\)A = {...............}
\(Cho\) \(ax+by+cz=0;a+b+c=\dfrac{1}{2018}\) . CMR: \(\dfrac{ax^{2\:}+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}=2018\)
Đề thi học sinh giỏi lớp 9 cấp tỉnh của tỉnh Thái Bình
Câu 1:
Cho x=\(\dfrac{\left(\sqrt{5}-1\right)\sqrt[3]{16+8\sqrt{5}}}{\sqrt[3]{10+6\sqrt{3}-\sqrt{3}}}\) Tính A=\(\left(77x^2+35x+646\right)^{2017}\)
Câu 2:
Cho các đa thức P(x) và Q(x) thỏa mãn P(x)=\(Q\left(x\right)+\left(x^2-x+1\right).Q\left(1-x\right)\)với mọi x thuộc R.Biết rằng các hệ số của P(x) là các số nguyên không âm và P(0)=0.Tính Q(2017)
Câu 3: Tìm nghiệm nguyên của Pt \(\left(2x-y-2\right)^2=7\left(x-2y-y^2-1\right)\)
Câu 4: giải pt, hot sau
1) \(\sqrt{3x-1}+\sqrt{x^2+17x+1}=x^2+3\)
2) \(\left\{{}\begin{matrix}x^3-3xy^2-x+1=x^2-2xy-y^2\\y^3-3x^2y+y-1=y^2-2xy-x^2\end{matrix}\right.\)
Câu 5: Cho tam giác đều ABC, M là điểm nằm trong tam giác. Gọi D,E,F thuộc AB,BC,AC sao cho MD//BC,ME//AC,MF//AB.Chứng minh rằng \(S_{ABC}\ge3S_{DEF}\)
Câu 6:Cho tam giác ABC nhọn nội tiếp (O) có AH=OA.E,F là chân đường cao hạ từ H đến AB,AC.Chứng minh rằng EF đi qua trung điểm của OA
Câu 6: Cho các số dương x,y,z sao cho \(\dfrac{12}{xy}+\dfrac{20}{yz}+\dfrac{15}{zx}\le1\)
Tìm max cúa P=\(\dfrac{3}{\sqrt{x^2+9}}+\dfrac{4}{\sqrt{y^2+16}}+\dfrac{5}{\sqrt{z^2+25}}\)