Cho a, b, c, d > 0 thỏa mãn \(\frac{a}{b}< \frac{c}{d}\)
Chứng minh rằng \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Cho a,b,c,d là các số thực thỏa mãn : \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)+2d
Tính M =\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Cho các số a,b,c,d thỏa mãn:
\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
Tính: D = \(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{b+a}+\frac{d+a}{b+c}\)
Cho các số a,b,c,d khác 0, thỏa mãn a+c = 2b ; 2bd = c(b+d). Chứng minh \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Cho a,b, c thỏa mãn :
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)
\(Tính\) \(P\) = \(\frac{a+b}{c+a}=\frac{b+c}{d+a}=\frac{c+d}{b+a}=\frac{d+a}{b+c}\)
các số a,b,c,d thỏa mãn điều kiện:
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\left(a+b+c+d\ne0\right)\)
chứng minh rằng a=b=c=d
Cho a,b,c,d thỏa mãn $\frac{a}{b}$ =$\frac{b}{c}$ =$\frac{c}{d}$ =$\frac{d}{a}$
CMR:($\frac{2019b+2020c-2021d}{2019c+2020d-2021e}$)^3=$\frac{a^2}{bc}$
Cho \(\frac{a}{b}\) = \(\frac{c}{d}\) chứng minh :
a) \(\frac{a^2 + b^2}{c^2 + d^2}\) = \(\frac{a*b}{c*d}\)
b) \(frac{(a + b)^2}{(c + d)^2}\) = \(\frac{a*b}{c*d}\)
cho các số dương a;b;c;d thỏa mãn \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)khi đó giá trị của biểu thức A=\(\frac{2a-b}{c+d}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)