\(\frac{a^4}{a^3+2b^3}=a-\frac{2ab^3}{a^3+b^3+b^3}\ge a-\frac{2ab^3}{3ab^2}=a-\frac{2}{3}b\)
tương tự cộng lại ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=d\)
\(\frac{a^4}{a^3+2b^3}=a-\frac{2ab^3}{a^3+b^3+b^3}\ge a-\frac{2ab^3}{3ab^2}=a-\frac{2}{3}b\)
tương tự cộng lại ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=d\)
Cho a,b,c,d là các số dương. cmr
a^3/a^2+b^2 + b^3/b^2+c^2 + c^3/c^2+d^2 + d^3/d^2+a^2 lớn hơn hoặc bằng a+b+c+d/2.
Help me!!!!!. thanks mn.
Cho a,b,c,d>0 \(\frac{a^4}{^{a^3+2b^3}}+\frac{b^4}{b^3+2c^3}+\frac{c^4}{c^3+2a^3}+\frac{d^4}{d^3+2a^3}>\frac{a+b+c+d}{3}\)
Nếu 50x^2 + 25x-3 = (Ax+B)(Cx+D) và D = -1 khi A,B,C là các số nguyên thì P = (C/A - B).D^2017 = ?
Cho a,b,c,d thỏa mãn 3a+2b-c-d=1; 2a+2b-c-2d=2; 4a-2b-3c+d=3; 8a+b-6c+d=4 thì giá trị của a+b+c+d là bao nhiêu?
Cho a, b, c, d là các số dương thỏa a+b+c+d=4
CMR: a/1+b^2 + b/1+c^2 + c/1+d^2 + d/1+a^2 lớn hơn bằng 2. Help me!!!!
Thanks mn
cho a,b,c,d không âm. Chứng minh rằng: 1/a^3+1/b^3+1/c^3+1/d^3 >= 1/a^2b+1/b^2c+1/c^2d+1/d^2a
\(Cho\hept{\begin{cases}a;b;c;d\ge1\\ab+bc+cd+da=4\end{cases}.}\)Chứng minh rằng :
\(\frac{a^4}{a^3+2b^3}+\)\(\frac{b^4}{b^3+2c^3}+\)\(\frac{c^4}{c^3+2d^3}+\)\(\frac{d^4}{d^3+2a^3}\ge\frac{4}{3}\)
chứng minh các BĐT
1.\(\frac{a+c}{a+b}+\frac{b+d}{b+c}+\frac{c+a}{c+d}+\frac{b+d}{d+a}\ge4\)với a,b,c,d >0
2.\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge4\left(\frac{1}{2a+b+c}+\frac{1}{2b+c+d}+\frac{1}{2c+d+a}+\frac{1}{2d+a+b}\right)\)
3.\(\frac{1}{a^4+b^4+c^4}+\frac{2}{a^2b^2+b^2c^2+c^2a^2}\ge\left(\frac{3}{a^2+b^2+c^2}\right)^2\\ \)với a,b,c>0
4.\(\frac{1}{3x-2}-\frac{1}{x-10}+\frac{1}{13-2x}\ge\frac{3}{7}\)vói x,y t/m\(\frac{2}{3}< x< \frac{13}{2}\)
Cho a,b,c,d thỏa mãn 3a+2b-c-d=1; 2a+2b-c-2d=2; 4a-2b-3c+d=3; 8a+b-6c+d=4 thì giá trị của a+b+c+d là bao nhiêu?
Cho a,b,c,d >0, a + b + c + d=4.cmr: a/(1 + b^2c) + b/(1 + c^2d) + c/(1 + d^2a) + d/(1 + a^2b) >=2