a) cho a,b,c không âm ; a+b+c=1 . tìm Max S
biết \(S=\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{a+c}\)
b)a,b,c,d không âm ; a+b+c+d=1,tìm Max S
Biết \(S=\sqrt[3]{2a+b}+\sqrt[3]{2b+c}+\sqrt[3]{2c+d}+\sqrt[3]{2d+a}\)
cho a,b,c,d>0, chứng minh rằng (a+2a/3b)(1+2b/3c)(1+2c/3d)(1+2d/3a)>=625/81
Cho a,b,c,d >0, a + b + c + d=4.cmr: a/(1 + b^2c) + b/(1 + c^2d) + c/(1 + d^2a) + d/(1 + a^2b) >=2
chứng minh các BĐT
1.\(\frac{a+c}{a+b}+\frac{b+d}{b+c}+\frac{c+a}{c+d}+\frac{b+d}{d+a}\ge4\)với a,b,c,d >0
2.\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge4\left(\frac{1}{2a+b+c}+\frac{1}{2b+c+d}+\frac{1}{2c+d+a}+\frac{1}{2d+a+b}\right)\)
3.\(\frac{1}{a^4+b^4+c^4}+\frac{2}{a^2b^2+b^2c^2+c^2a^2}\ge\left(\frac{3}{a^2+b^2+c^2}\right)^2\\ \)với a,b,c>0
4.\(\frac{1}{3x-2}-\frac{1}{x-10}+\frac{1}{13-2x}\ge\frac{3}{7}\)vói x,y t/m\(\frac{2}{3}< x< \frac{13}{2}\)
1) cho a;b;c ko âm .chứng minh \(\sqrt{\frac{a+2b}{3}}+\sqrt{\frac{b+2c}{3}}+\sqrt{\frac{c+2a}{3}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)
2) cho a;;b;c dương và abc=1. chứng minh \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\ge\frac{3}{2}\)
cho\(\hept{\begin{cases}a,b,c,d>0\\a+b+c+d=4\end{cases}}\). Chứng minh rằng D=\(\frac{a}{1+b^2c}\)+\(\frac{b}{1+c^2d}\)+\(\frac{c}{1+d^2a}\)+\(\frac{d}{1+a^2b}\)>=2
Cho 0< a,b,c<1. Chứng minh rằng \(2a^3+2b^{^3}+2c^3< 3+a^2b+b^2c+c^2a\)
Cho 0<a,b,c<1. Chứng minh rằng;
\(2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)
Cho 0<a,b,c<1.Chứng minh rằng:\(2a^3+2b^3+2c^3<3+a^2b+b^2c+c^2a\)