cho các số nguyên dương a, b, c, d sao cho a>b, c>d. chứng minh rằng nếu a+b+c+d=ab-cd thì a+c là hợp số
cho a,b,c,d là các số tự nhiên thỏa mãn : đôi 1 khác nhau và a2+d2=b2+c2=t.
chứng minh ab+cd và ac+bd không thể đồng thời là số nguyên tố
Cho 4 số dương a,b,c,d .
Chứng minh không thể đồng thời xảy ra các bđt sau :
1. a+b<c+d
2. (a+b)(c+d) < ab+cd
3. (a+b)cd < (c+d)ab
Cho a,b,c,d là các số nguyên dương đôi một phân biệt thỏa mãn a+b=c+d=p ( p là số nguyên tố) Chứng minh tích abcd không là số chính phương
Cho 4 số nguyên thỏa mãn điều kiện a+b=c+d và ab+1=cd
Chứng minh c=d
Cho các số nguyên dương a,b,c,d sao cho a>b, c>d.Chứng minh rằng: a+b+c+d=ab-cd thì a+c là hợp số.
Cho a,b,c,d là các số nguyên dương, thỏa mãn ab=cd.
Chứng minh rằng: \(a^{2016}+b^{2016}+c^{2016}+d^{2016}\)là hợp số
Cho 4 số không âm a.b.c.d thỏa mãn ab+bc+cd+da=1. Chứng minh rằng:
\(\frac{a^3}{b+c+d}+\frac{b^3}{c+d+a}+\frac{c^3}{d+a+b}+\frac{d^3}{a+b+c}\ge\frac{1}{3}\)
Cho a,b,c,d là các số nguyên dương, thỏa mãn ab=cd.
Chứng minh rằng: \(a^{2016}+b^{2016}+c^{2016}+d^{2016}\)là hợp số