Cho a,b,c>0 và dãy tỉ số\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính P = \(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Cho 3 số dương a,b,c thỏa măn 2a+b-c/c = 2b+c-a/a = 2c+a-b/b
Tính A= (3a-c)(3b-a)(3c-b)/(3a-2b)(3b-2c)(3c-2a)
Bài 1 : Cho a. b. c và dãy tỉ số: \(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}\)
Tính P= \(\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
cho dãy tỉ số :\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}\)
tính :\(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
cho a,b,c >0 và dãy tỉ số \(\frac{2a+b-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}\)
tính M=\(\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
cho a,b,c là 3 số dương thỏa mãn : 3a-b /c = 3b - c /a = 3c -a / b
tính giá trị biểu thức A= a/2b-3c + b/2c-3a + c/2a-3b
Cho a,b,c > 0 và dãy tỉ số : \(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}\)
Tính : \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Cho tỉ lệ thức a/b=c/d.Chứng minh
a)3a+5b/3a-5b=3c+5d/3c-5d
b) 2a + 3b/ 2a - 3b= 2c+3d/2c-3d
c)ab/cd=a^2-b^2/c^2-d^2
Cho 3 số dương a, b, c thỏa mãn : \(\frac{2a+b-c}{c}=\frac{2b+c-a}{a}=\frac{2c+a-b}{b}\)
Tính \(A=\frac{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}\)