Bài này áp dụng BĐT Cauchy (Cô-si) cho 2 số.
Ta có: a^2/b + b >= 2.căn[(a^2/b).b] = 2.căn(a^2) = 2|a| >= 2a
Tương tự, b^2/c + c >= 2|b| >= 2b
................c^2/a + a >= 2|c| >= 2c
Cộng vế với vế, ta được:
a^2/b + b^2/c + c^2/a + a + b + c >= 2a + 2b + 2c
<=> a^2/b + b^2/c + c^2/a >= a + b + c (điều phải chứng minh)
Hen xui nghe ban !
giả thiết
=> a^2 / b+ c + ab/c+a + ac/ a+ b = a
ab/ (b+c) + b^2 / (c+a) + cb/ a+b = b
ac/ b+ c + bc/ c+a + c^2/ a+b = c
Cộng từng vế với nhau ta được :
a^2 / b+ c + ab/c+a + ac/ a+ b + ab/ (b+c) + b^2 / (c+a) + cb/ a+b + ac/ b+ c + bc/ c+a + c^2/ a+b > a+ b + c
=> (a^2/ b+ c + b^2/ c+a + c^2/ a+b) + (ab/ (c+ a) + bc/ (c+a) ) + (ac/ (a+b) + cb/ (a+b)) + (ab/ (b+c) + ac/ (b+c)) = a+ b + c
=> (a^2/ b+ c + b^2/ c+a + c^2/ a+b) + b + c + a = a+ b + c
=> a^2/ b+ c + b^2/ c+a + c^2/ a+b = 0 (ĐPCM)