\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=\frac{8}{a^2}+\frac{8}{b^2}+\frac{8}{c^2}=8\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=8.\frac{3}{4}=6\)
\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=\frac{8}{a^2}+\frac{8}{b^2}+\frac{8}{c^2}=8\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=8.\frac{3}{4}=6\)
Cho abc=8 và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)(a,b,c>0). Tính giá trị của: \(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\)
Cho a,b,c >>0 ; abc =8
Và \(\frac{1}{b^2}\)+ \(\frac{1}{c^2}\)+ \(\frac{1}{a^2}\)= \(\frac{3}{4}\)
Tính giá trị của A = bc/a + ac/b + ab/c = ?
Cho abc=8 và \(\frac{1}{a^2}\)+\(\frac{1}{b^2}\)+\(\frac{1}{c^2}\)=\(\frac{3}{4}\)(a,b,c>0)
tính giá trị \(\frac{bc}{a}\)+\(\frac{ac}{b}\)+\(\frac{ab}{c}\)
a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a2-bc)(1-ac)=a(1-bc)(b2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m \(\frac{1}{^{a^3}^{ }}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Cho a,b,c là 3 số đôi một khác nhau và khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Tính giá trị của biểu thức M=\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\)
1) Cho \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)
CM: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\)
2) Cho \(abc\ne1\)và \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ac+1}{a}\)
CM: a=b=c
Cho a,b,c thỏa mãn:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) tính A=\(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}\)
Bạn nào học qua rồi thì giải hộ tớ bài này với.
1.Cho a, b, c là độ dài 3 cạnh của 1 tam giác
Chứng minh: (a+b-c)(b+c-a)(c+a-b)<=abc
2.Cho a, b, c>0 thoả mãn ab+bc+ca=1.
Tim min M = \(\frac{3a^2b^2+1}{c^2+1}+\frac{3b^2c^2+1}{a^2+1}+\frac{3c^2a^2+1}{b^2+1}\)
3.Cho a,b,c>0 thoả mãn a+b+c=3.
Tìm min N = \(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\)
4.Cho a, b, c>0 thoả mãn abc=1
Chứng minh: \(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ac}<=1\)
Cho a+b+c=1 ( a,b,c khác 1 và 2 ) CMR: \(\frac{c+ab}{a^2+b^2+abc-1}+\frac{a+bc}{b^2+c^2+abc-1}+\frac{b+ac}{a^2+c^2+acb-1}=\frac{bc+ac+ab+8}{(a-2)(b-2)(c-2)}\)
Cho a,b,c đôi một khác nhau và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Tính \(A=\frac{bc+1}{a^2+2bc}+\frac{ac+1}{b^2+2ac}+\frac{ab+1}{c^2+2ab}\)