Ta có\(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}=a+b+c=2016\)Vậy...
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Ta có\(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}=a+b+c=2016\)Vậy...
Cho a + b + c = 2009. Chứng minh rằng
\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=2009\)
Cho a+b+c=2016
CMR (a^3 +b^3 +c^3 -3abc) /(a^2 +b^2+c^2 -ab -ac -bc)=2016
Thực hiện phép tính (a+b)(a^2+b^2-c^2-ab-bc-ac) và chứng minh rằng nếu a^3+b^3+c^3=3abc thì a=b=c hoặc a+b+c +0
Cho a+b+c=0. a)Chứng minh rằng a3+b3+c3 = 3abc
b) Tính giá trị của biểu thức
P= a2/bc + b2/ac + c2/ab với a,b,c khác 0
(a+b+c).(a2+b2+c2-ab-bc-ca)
a) Chứng minh =a3+b3+c3-3abc
b) Nếu cho a+b+c
Chứng minh a3+b3+c3=3abc
Chứng minh rằng nếu:
a) \(a^2+b^2+c^2=ab+ac+bc\)thì a = b = c
b) \(a^3+b^3+c^3=3abc\)thì a = b = c hoặc a+ b +c = 0
c) a + b +c = 0 thì \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
Chứng minh:
a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)
Chứng minh: A3 +B3+C3=(A+B+C)(A2+B2+C2-AB-BC-AC)+3ABC
chứng minh
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)
Chứng minh rằng: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2c^2-ab-bc-ca\right)\)