Sử BĐT Bunhiacopxki giải bài toán sau:
Cho các số thực dương a,b,c thỏa mãn \(a+b+c\ge6\) .Tìm GTNN của biểu thức sau:
\(A=\sqrt{a^2+\frac{1}{b+c}}+\sqrt{b^2+\frac{1}{c+a}}+\sqrt{c^2+\frac{1}{a+b}}\)
Cho các số thực dương a,b,c thỏa mãn \(a+b+c\ge6\)Tìm GTNN của biểu thức sau:
\(A=\sqrt{a^2+\frac{1}{b+c}}+\sqrt{b^2+\frac{1}{c+a}}+\sqrt{c^2+\frac{1}{a+b}}\)
Mọi người giúp em bằng BĐT Bunhiacopxki với ạ!
Cho a,b,c>0 thỏa a+b+c>=3.Tìm GTNN của biểu thức:M=\(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}+\frac{c}{\sqrt{a}}\)
Bài 1: Cho a,b,c là đọ dài 3 cạnh của một tam giác. CMR: \(\frac{1}{\sqrt{b+c-a}}+\frac{1}{\sqrt{a+c-b}}+\frac{1}{\sqrt{a+b-c}}\ge\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}.\)
Bài 2: Cho a,b,c >0. CMR: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right).\)
Cho \(P=\frac{a^2-\sqrt{a}}{a+\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+\frac{2a-2}{\sqrt{a}-1}\)
a) Tìm điều kiện của a để P có nghĩa, rút gọn P
b) Tìm GTNN của P
c) TÌm các giá trị của a để M=\(\sqrt{a}\cdot\frac{2}{P}\)có giá trị nguyên
Bài 1:Cho a,b,c là các số thực dương thỏa mãn a+b=1.Tìm GTNN của bt sau
\(a,A=\frac{2}{ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\)
\(b,B=\frac{1}{ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\)
Bài 2:Cho a,b,c là 3 số dương thỏa mãn a+b+c=9.tìm GTNN của bt
\(a,A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}\) \(b,B=\frac{a^3}{c^2+b^2}+\frac{b^3}{a^2+c^2}+\frac{c^3}{a^2+b^2}\)
Bai 3:Cho x,y là 2 số dương thỏa mãn \(x^2+y^2=4\) Tìm GTNN của bt \(A=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)
Bài 4 Cho a,b,c là các số không âm thỏa mãn a+b+c=1 Tìm GTLN của bt
\(a,A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\) \(b,B=\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{a+c}\)
Need some helps!
1. Cho x, y, z > 0 tm \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) CMR:
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
2. Cho a, b, c > 0 tm a + b + c = 1. Tìm GTNN của bt sau
\(P=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
Cho a,b,c>0 và\(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)Tính\(A=\frac{1+a}{\sqrt{a}+\sqrt{b}}+\frac{1+b}{\sqrt{b}+\sqrt{c}}+\frac{1+c}{\sqrt{c}+\sqrt{a}}\)
Cho a,b,c là ba số thực dương, thoả mãn: \(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)
CMR: \(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)