cho a,b,c>0 , chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(1\right)\) Áp dụng chứng minh các BĐT sau:
a,\(\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)
b,cho \(x,y,z>0\) thỏa mãn x+y+z=1.Tìm GTLN của biểu thức\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
c,cho a,b,c>0 thỏa mãn\(a+b+c\le1\) Tìm GTNN của biểu thức\(P=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
d,cho a,b,c >0 thỏa mãn a+b+c=1.Chứng minh\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge30\)
a) Cho \(ab+bc+ca=abc\ne0\)và \(a+b+c=0\) Chứng minh \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\).
b) a,b,c >0 và a+b+c=1 . Chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Cho a, b, c > 0. Chứng minh rằng: \(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho a;b;c>0 . Chứng minh rằng : \(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho \(a;b;c>0\). Chứng minh rằng:
\(\frac{a+b}{bc+a^2}+\frac{b+c}{ca+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho a, b, c là các số dương và a+b+c=1 chứng minh rằng: \(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{15}{4}\)
cho a,b,c thoả mãn \(\frac{1}{bc-a^2}+\frac{1}{ca-b^2}+\frac{1}{ab-c^2}=0\)
chứng minh rằng \(y=\frac{a}{\left(bc-a^2\right)^2}+\frac{b}{\left(ac-b^2\right)^2}+\frac{c}{\left(ab-c^2\right)^2}=0\)
Bạn nào học qua rồi thì giải hộ tớ bài này với.
1.Cho a, b, c là độ dài 3 cạnh của 1 tam giác
Chứng minh: (a+b-c)(b+c-a)(c+a-b)<=abc
2.Cho a, b, c>0 thoả mãn ab+bc+ca=1.
Tim min M = \(\frac{3a^2b^2+1}{c^2+1}+\frac{3b^2c^2+1}{a^2+1}+\frac{3c^2a^2+1}{b^2+1}\)
3.Cho a,b,c>0 thoả mãn a+b+c=3.
Tìm min N = \(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\)
4.Cho a, b, c>0 thoả mãn abc=1
Chứng minh: \(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ac}<=1\)
Cho a,b,c>0 thoả mãn a+b+c=1. CMR:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}\ge30\)