Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
pham trung thanh

Cho \(a;b;c>0\)và \(ab+bc+ca=abc\)\(.\)\(CMR\)\(:\)

       \(\frac{a^4+b^4}{ab\left(a^3+b^3\right)}+\frac{b^4+c^4}{bc\left(b^3+c^3\right)}+\frac{c^4+a^4}{ca\left(c^3+a^3\right)}\ge1\)

Giúp mình gấp nhé! Tối mai mình cần rồi

Kiệt Nguyễn
31 tháng 5 2020 lúc 8:16

Từ giả thiết ta có: \(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Xét vế trái: \(\frac{a^4+b^4}{ab\left(a^3+b^3\right)}+\frac{b^4+c^4}{bc\left(b^3+c^3\right)}+\frac{c^4+a^4}{ca\left(c^3+a^3\right)}\)\(=\frac{\frac{a^4+b^4}{a^4b^4}}{\frac{ab\left(a^3+b^3\right)}{a^4b^4}}+\frac{\frac{b^4+c^4}{b^4c^4}}{\frac{bc\left(b^3+c^3\right)}{b^4c^4}}+\frac{\frac{c^4+a^4}{c^4a^4}}{\frac{ca\left(c^3+a^3\right)}{c^4a^4}}\)

\(=\frac{\frac{1}{a^4}+\frac{1}{b^4}}{\frac{1}{a^3}+\frac{1}{b^3}}+\frac{\frac{1}{b^4}+\frac{1}{c^4}}{\frac{1}{b^3}+\frac{1}{c^3}}+\frac{\frac{1}{c^4}+\frac{1}{a^4}}{\frac{1}{c^3}+\frac{1}{a^3}}\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\Rightarrow\hept{\begin{cases}x,y,z>0\\x+y+z=1\end{cases}}\)

và ta cần chứng minh \(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge1\)

Ta xét BĐT phụ sau: \(\frac{p^4+q^4}{p^3+q^3}\ge\frac{p+q}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(p-q\right)^2\left(p^2+pq+q^2\right)\ge0\)(đúng với mọi số thực p,q)

Áp dụng ta có: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)(1); \(\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2}\)(2); \(\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được:

\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{2\left(x+y+z\right)}{2}=1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = z = \(\frac{1}{3}\)hay a = b = c = 3

Khách vãng lai đã xóa
vũ tiền châu
19 tháng 12 2017 lúc 23:10

nham nha mn, phai  laf 2(a^4+b^4)>=(a+b)(a^3+b^3)

vũ tiền châu
19 tháng 12 2017 lúc 18:31

bài cuối của đề thi học sinh giỏi câp stỉnh môn toán 9 của tỉnh thái binh năm 2016-2017 

cái này dùng bđt phụ là a^4+b^4>=(a+b)(a^3+b^3) cái này dùng cô si và biến đổi gt tí là ra

Phạm Anh Tuấn
31 tháng 5 2020 lúc 9:55

mmmmmmmmmmmmmmmmmmlmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Khách vãng lai đã xóa

Các câu hỏi tương tự
Vũ Phương Thư
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
shitbo
Xem chi tiết
Nguyễn Thị Lan Anh
Xem chi tiết
sakura
Xem chi tiết
Zeref Dragneel
Xem chi tiết
Phan Nghĩa
Xem chi tiết
Dothnn
Xem chi tiết
Trung Nguyen
Xem chi tiết