Cho a,b,c>0.CMR:
\(\frac{a}{\sqrt[3]{4\left(b^3+c^3\right)}}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(VT-VP=\left[\frac{a}{\sqrt[3]{4\left(b^3+c^3\right)}}-\frac{a}{b+c}\right]+\left[\Sigma_{cyc}\frac{a}{b+c}-\frac{3}{2}\right]\)
\(=\left[\frac{-3a\left(b+c\right)}{\left(b+c\right)\sqrt[3]{4\left(b^3+c^3\right)}\left[\left(b+c\right)^2+\left(b+c\right)\sqrt[3]{4\left(b^3+c^3\right)}+\left(\sqrt[3]{4\left(b^3+c^3\right)}\right)^2\right]}+\frac{1}{2\left(b+a\right)\left(c+a\right)}\right]\left(b-c\right)^2+\frac{\left(a-b\right)^2}{2\left(a+c\right)\left(b+c\right)}+\frac{\left(b-c\right)^2}{2\left(b+a\right)\left(c+a\right)}\)
Em bế tắc rồi:((
Thấy căn bậc 3 hơi ngại.. Em vừa thử dồn biến, căn thức nhìn khúc khiếp lắm, tới khúc cuối ngược dấu, bực kinh.
@Akai Haruma chị làm giúp ạ, em thấy bài này khá chặt, SOS của em ra kết quả rất xấu khiến em bế tắc...