\(\frac{a^2}{\sqrt{3a^2+8b^2+12ab+2ab}}\ge\frac{a^2}{\sqrt{3a^2+9b^2+12ab+a^2+b^2}}=\frac{a^2}{\sqrt{\left(2a+3b\right)^2}}=\frac{a^2}{2a+3b}\)
\(\Rightarrow VT\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\frac{1}{5}\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c\)