Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
TaeTae Kim

\(CMR\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}>=1\)

Võ Hồng Phúc
19 tháng 11 2019 lúc 17:39

Áp dụng BĐT AM - GM:

\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\sqrt{\frac{1}{1+\frac{\left(a+c\right)^3}{a^3}}}=\sqrt{\frac{1}{\left(1+\frac{a+c}{a}\right)\left[1-\frac{a+c}{a}+\frac{\left(a+c\right)^2}{a^2}\right]}}\)

\(\ge\sqrt{\frac{4}{\left[1++\frac{a+c}{a}+1-\frac{a+c}{a}+\frac{\left(a+c\right)^2}{a^2}\right]^2}}\)

\(=\sqrt{\frac{4a^4}{\left[2a^2+\left(b+c\right)^2\right]^2}}=\frac{2a^2}{2a^2+\left(b+c\right)^2}\ge\frac{a^2}{a^2+b^2+c^2}\)

Tương tự ta chứng minh được:

\(\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\)

\(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}\)

Công vế với vế 3 bất đẳng thức trên ta được

\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

Dấu ''='' xảy ra \(\Leftrightarrow a=b=c\)

Mà đề bài có điều kiện a, b, c khác 0 không bạn

Khách vãng lai đã xóa
sjbjscb
19 tháng 11 2019 lúc 19:59
Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Khánh Huyền
Xem chi tiết
Thảo Vi
Xem chi tiết
lữ thị xuân nguyệt
Xem chi tiết
Toán Chuyên Học
Xem chi tiết
Ngọc Ánh
Xem chi tiết
Anh Đỗ Nguyễn Thu
Xem chi tiết
Nhung Truong
Xem chi tiết
Tiến Lăng
Xem chi tiết
Tùng Trần Sơn
Xem chi tiết