Câu hỏi của Ngô Đức Duy - Toán lớp 8 - Học toán với OnlineMath ...
Câu hỏi của Ngô Đức Duy - Toán lớp 8 - Học toán với OnlineMath ...
Cho a+b+c=0 CMR:\(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
Cho a + b + c= 0 CMR: \(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
Cho a+b+c=0 CMR: \(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
Cho \(a+b+c=0\).CMR
a) \(a^3+b^3+c^3=3abc\)
b) \(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
c) \(\left(a^2+b^2+c^2\right)=2\left(a^4+b^4+c^4\right)\)
cho a+b+c=0
Chứng minh \(a^4+b^4+c^4\)=2\(\left(ab+ac+bc\right)^2\)
a)Tìm số tự nhiên n để \(n^2-3n+5\) chia hết cho \(n-2\)
b)Cho 3 số a,b,c thoả mãn a+b+c=0.CMR:
\(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
Mong các bạn giúp đỡ
Chứng minh với các số a; b; c là các số thực, ta luôn có:
\(\left(a-b\right)^5+\left(b-c\right)^5+\left(c-a\right)^5=5\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
cho a+b+c=0
CM
\(2\left(a^2+b^2+c^2\right)\)=\(5abc\left(a^2+b^2+c^2\right)\)
nhanh minh tick cho ok
Với các số dương a, b, c thỏa mãn a+b+c=3abc, chứng minh rằng:
\(a^4b^4+b^4c^4+c^4a^4>=3a^4b^4c^4\)
Với các số dương a, b, c. Chứng minh rằng:
\(\frac{a^5}{bc^2}+\frac{b^5}{ca^2}+\frac{c^5}{ab^2}>=a^2+b^2+c^2\)
Với các số dương a, b, c. Chứng minh rằng:
\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b^3}{\left(c+2a\right)^2}+\frac{c^3}{\left(a+2b\right)^2}>=\frac{1}{9}\left(a+b+c\right)\)