1, Cho a,b,c >0 thoả mãn a+b+c=6. Tìm GTNN của biểu thức
\(P=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
1. Cho a + b + c = 9 và a,b,c là các số dương. Tìm GTNN của P = \(\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)\)
2. Cho a,b,c > 0 thõa mãn: a + b + c = 1. Tìm GTNN của Q = \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\)
\(A=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
Tìm GTNN của A , cho a,b,c>0 và a+b+c=1
Cho a;b;c>0 và \(a^2\ge b^2+c^2\). Tìm GTNN của
\(A=\frac{a^2}{b^2}+\frac{a^2}{c^2}+\frac{b^2+c^2}{a^2}\)
Cho a, b, c>0. Tìm GTNN của \(A=\frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ca}\)
Cho a,b,c>0, a+b+c=1. Tìm GTNN của \(P=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2\)
Cho a,b,c>0 thỏa mãn a+b+c=3
Tìm GTNN của P
P=\(\frac{1}{a^2+b+c}+\frac{1}{b^2+a+c}+\frac{1}{c^2+a+b}\)
1,Cho A=x/y+1 +y/x+1 bới x>0;y>0 và x+y=1
tìm GTNN,GTLN của A
2,Cho a+b+c=3 và a,b,c >0
Chứng minh \(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{3}{2}\)
Cho a,b,c>0 thỏa mãn a+b+c=3 Tìm GTNN của
\(P=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)