cho abc=1 a,b,c>0
. chứng minh \(\frac{1}{a^2+2b^2+3}\) + \(\frac{1}{b^2+2c^2+3}\)+ \(\frac{1}{c^2+2a^2+3}\)nhỏ hơn hoặc bằng \(\frac{1}{2}\)
cho 3 số dương a,b,c có tổng bằng 1 chứng minh rằng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)lớn hơn hoặc bằng 9
Cho a + b + c = 3. Chứng minh \(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\)lớn hơn hoặc bằng 3
cho a;b;c là 3 số hữu tỉ từng đôi một khác nhau và khác 0
biết \(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\) cmr: hoặc abc=1 hoặc abc=-1
Cho
\(a+b+c=2016\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2016}\)
Cmr a hoặc b hoặc c bằng 2016
\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)
Chứng minh biểu thức trên lớn hơn hoặc bằng 3
Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính giá trị D = x ^2017 + y^2017 + z^2017
Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)
Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)
bài 3 : Cho a, b, c khác nhau thỏa mãn :
\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)
Chứng minh : 2 phân thức có giá trị = 1 và 1 phân thức có giá trị = -1
Bài 4 : Cho A = \(\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)
a, Rút gọn A
b, Cm : Nếu n thuộc Z thì A tối giản
Bài 5 : Cho n thuộc Z, n nhỏ hơn hoặc = 1
CMR : 1^3 + 2^3 + 3^3 +....+ n^3 = \(\frac{n^2\left(n+1\right)^2}{4}\)
Bài 6 : Cho M =\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
N =\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
a, Cm : nếu M = 1 thì N = 0
b, Cm : Nếu N = 0 thì có nhất thiết M = 1 ko ?
Cho 3 số a, b, c khác 0 thỏa mãn: a + b + c = 2017 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\)
Chứng minh rằng có ít nhất 1 trong 3 số a, b, c bằng 2017
xin lỗi các bạn mình chép thiếu đề nha!!!!!
cho 3 số a,b,c thỏa mãn mỗi số lớn hơn hoặc bằng 4/3và a+b+c=6
CMR:\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}>=\frac{6}{5}\)